
Open-Digital -Industrial and Networking pilot lines using modular

components for scalable production

Grant Agreement No : 101017141

Project Acronym : ODIN

Project Start Date : 1st January, 2021

Consortium : UNIVERSITY OF PATRAS ï LABORATORY FOR MANUFACTURING

SYSTEMS AND AUTOMATION

FUNDACION TECNALIA RESEARCH & INNOVATION

KUNGSLIGA TEKNISKA HOEGSKOLAN

TAMPEREEN KORKEAKOULUSAATIO SR

COMAU SPA

PILZ INDUSTRIEELEKTRONIK S. L.

ROBOCEPTION GMBH

VISUAL COMPONENTS OY

 INTRASOFT INTERNATIONAL SA

 GRUPO S21SEC GESTIÓN, S.A.

 FUNDACION AIC AUTOMOTIVE INTELLIGENCE CENTER FUNDAZIOA

 DGH ROBOTICA, AUTOMATIZACION Y MANTENIMIENTO

INDUSTRIAL SA

 PSA AUTOMOBILES S.A.

 AEROTECNIC COMPOSITES SL. U.

 WHIRLPOOL EMEA SPA

Title : ODIN Networked Component initial prototype

Reference : D4.1

Availability : Public

Date : 30/06/2022

Author/s : S21SEC, INTRA

Circulation : EU, Consortium

Summary:

The purpose of this document is to present the design and initial prototype of:

a) OpenFlow communication and integration architecture and

b) Active DT Protection Framework and DT Intelligent Threat Analysis Toolkit

ODIN 101017141

-2-

Table of Contents

LIST OF FIGURES ...4

LIST OF TABLES ...5

EXECUTIVE SUMMARY ...6

1. INTRODUCTION ...8

2. OPENFLOW ..10

2.1. Introduction ...10

2.2. Features ...11

2.2.1. Orchestrate Modules and Resources ..11

2.2.2. Emulation ...12

2.2.3. Simulation ..12

2.2.4. React on Shopfloor Events ...13

2.2.5. React on Safety Events ..13

2.2.6. React on Security Events ...13

2.2.7. Control & Monitor Task and Action Execution Flow14

2.2.8. Monitor Network Software Modules Status ..15

2.2.9. Control OpenFlow Execution Flow ...15

2.2.10. Request Replanning ...16

2.2.11. Validate Open Schedules ...16

2.2.12. OpenFlow Knowledge Repository ...17

2.2.13. Information Exchange with ERP systems ..18

2.2.14. User Interface ...19

2.3. Design ...26

2.4. Initial Prototype ..27

3. CYBERSECURITY ...29

3.1. Introduction ...29

3.2. Features ...29

3.2.1. Threat modelling and attack surface definition29

3.2.2. Detection ..30

3.2.3. Response ..30

3.3. Design ...31

3.3.1. Attack modelling methodology ..31

3.3.2. ODIN network architecture ..31

ODIN 101017141

-3-

3.3.3. Cybersecurity Module Architecture ...32

3.3.4. Validation ...34

3.4. Initial Prototype ..34

3.4.1. Prototype environment ...34

3.4.2. Attack scenario ...35

3.4.3. Cybersecurity module implementation ..41

3.4.4. Initial integration and testing ...43

4. CONCLUSIONS ...48

5. GLOSSARY ..49

6. REFERENCES ..50

7. ANNEX A: MAGMA ADAPTATION TO INDUSTRIAL NETWORKS51

7.1. Steps of the Analysis ...51

7.2. Step 1 - Definition of the Scope ..53

7.3. Step 2 - Identification of the relevant assets and Entry Points55

7.3.1. Central Control Station ..55

7.3.2. Certification Authority ...55

7.3.3. Historian Database ...56

7.3.4. Control Station ...56

7.3.5. Controller ...56

7.4. step 3 - Analyse Potential Drivers and References in MaGMa58

7.4.1. Potential Drivers and References in the Ros-based Scenario58

7.5. Step 4 ï Generation of the L1 Use Cases ...59

7.5.1. L1 Use Cases for the ROS-based Scenario ..60

7.6. Step 5 ï Generation of the L2 Use Cases ...60

7.7. L2 Use Cases for the ROS-based Scenario ...62

7.8. Step 6 ï Generation of the L3 Use Cases ...64

7.8.1. L3 Use Cases for the ROS-based Scenario ..64

7.9. Interpretation of the Metrics ...66

7.10. References ...68

ODIN 101017141

-4-

L IST OF FIGURES
Figure 1: ODIN Reference Architecture - Component Level Diagram 9
Figure 2: OpenFlow modules orchestration ... 11
Figure 3: OpenFlow: Request Replanning ... 16
Figure 4: OpenFlow KR: User, Product Plan, Schedule Data Model 17
Figure 5: Information Exchange with AEROTECNIC - SAP ... 19

Figure 6: OpenFlow UI: Login Page ... 19
Figure 7: OpenFlow UI: Schedules Tab .. 20
Figure 8: Open Flow UI: Execution Status Tab ... 20
Figure 9: Options while Schedule is running ... 21
Figure 10: Options while Schedule is paused .. 21

Figure 11: Tasks Execution Status ... 21
Figure 12: Actions Execution Status.. 22

Figure 13: White Goods preliminary pilot case demo - Tasks diagram 23

Figure 14: Open Flow UI: Product Plans Tab ... 24
Figure 15: Open Flow UI: Resources Tab ... 24
Figure 16: Open Flow UI: Resourceôs modules .. 25
Figure 17 : OpenFlow Initial Prototype Interfaces Design .. 26

Figure 18: ODIN Preliminary White Goods Pilot Case deployment diagram 27
Figure 19: ODIN Network Architecture based on IEC 62443 / ISA99 model 32

Figure 20: ODIN Network Architecture with Cybersecurity tools integrated 33
Figure 21: ODIN Networked Component Emulation .. 35

Figure 22: ODIN Architecture interactions flow ... 36
Figure 23: OpenFlow publishers and subscribers list .. 37
Figure 24: MITRE Matrix filtered for ICS domain ... 39

Figure 25: ODIN Cybersecurity System general implementation ... 41

Figure 26: ODIN Cybersecurity System detailed implementation .. 43
Figure 27: ODIN Cybersecurity System detailed implementation .. 44
Figure 28: Event detected in the SIEM .. 44

Figure 29: Automated case management in Shuffle .. 45
Figure 30: Alert management in The Hive .. 46

Figure 31: Alert scalation to case in The Hive .. 47
Figure 32: Steps of MaGMA use case framework for a given scenario 52
Figure 33: Relative reference in the formulas of the MaGMA tool .. 53
Figure 34: Modified formulas in the MaGMA tool ... 53

Figure 35: Use case architecture diagram .. 54
Figure 36: Threat categories proposed in MaGMA to serve as an overview of the use cases 59
Figure 37: Examples of the L2 use cases provided by MaGMa .. 61
Figure 38: Example of the selected L2 use cases for the ROS-based scenario 63

Figure 39: Example of the generated L3 use case for the ROS-based scenario 65
Figure 40: Colour scale used in MaGMa ... 66
Figure 41: Example of an optimal deployed use case .. 67

Figure 42: Generated dataset of the metrics defined in MaGMa ... 67

ODIN 101017141

-5-

L IST OF TABLES
Table 1: OpenFlow features ... 10
Table 2: White Goods preliminary demo, ActionLib server ROS Nodes 12
Table 3: OpenFlow Simulating Interfaces ... 13
Table 4: OpenFlow security interface .. 14
Table 5: OpenFlow Implemented Action Interfaces .. 14

Table 6: White Goods preliminary demo tasks .. 18
Table 7: OpenFlow UI: Navigation Tabs... 19
Table 8: Summary of the assets in the network of the use case and their properties............... 57

ODIN 101017141

-6-

EXECUTIVE SUMMARY

This deliverable is the result for M18 initial prototype of the ODIN Network Component,

comprising the outcome of tasks T4.1 ñReference integration and communication architecture

for reconfigurable productionò and T4.2 ñCybersecurity and data processing in autonomous

production environmentsò. The document describes the ñODIN Networked Componentò

including a) OpenFlow module, responsible to integrate, orchestrate, manage and coordinate

production resources to execute manufacturing schedules, and b) the Cybersecurity module

responsible to provide detection and response capabilities on the deployed Network

Component.

The initial prototype of the OpenFlow module is a functional initial prototype able to integrate,

orchestrate and manage other modules. The initial prototype of OpenFlow module includes

the following functionalities:

¶ Orchestration of Modules and Resources,

¶ Emulated execution of a production schedule,

¶ Simulated execution of a production plan in a 3D virtual environment,

¶ Reaction on Shopfloor Events (Execution failure events and recovery strategies),

¶ Reaction on Safety Events (Safety violation events and recovery strategies),

¶ Reaction on Security Events: (Security violation events and recovery strategies),

¶ Control, Monitor Task and Action Execution Flow,

¶ Monitoring of Network Software Modules Status,

¶ Controlling of OpenFlow Execution Flow,

¶ Request execution task replanning,

¶ Validation of Open Schedules,

¶ OpenFlow Knowledge Repository,

¶ Information Exchange with ERP systems,

¶ UI offering control, monitoring, and views of OpenFlow functionalities to end user.

A prototype for ODIN Cybersecurity solution is also described and including the process and

methodology for ODIN threat modelling and describing a cybersecurity toolkit for incident

detection and response. In particular, the modelling and monitoring protection will be focused

on the scope of the ODIN Networked component (OpenFlow).

Different methodologies for threat modelling, like MaGMa [15] and MITRE ATT&CK [13]

have been analyzed, and using both approaches it has concluded on a particular attack

modelling methodology definition. The resultant threat model for ODIN will include a set of

selected techniques that can be used for a hypothetical attack to the ODIN Networked

component.

Two main components of the Cybersecurity module are. Incident detection and Incident

Response. In terms of detection, the implementation of detection is based on Security

Information and Event Management (SIEM) tools, with the capabilities of collection of raw

data from the network and systems and event generation. In terms of response, the

implementation is based on Security Orchestration, Automation and Response (SOAR) tools,

with the capabilities of automation workflows definitions that derive in incident response and

further Security Operation Center SOC management approach.

A proposal for the ODIN network architecture, coherent and based on former ISA 99, and

recent IEC 62443 and NIST 800-82 as reference frameworks, that proposes security in the

ODIN 101017141

-7-

design of industrial networks, has been also including highlighting the SIEM and SOAR

components on the deployed architecture.

Initial attack scenario has been defined along with the attack surface analysis to identify the

elements with which the OpenFlow interacts, and the interfaces through which an attack exploit

could be performed. An adapted threat model is designed, using Cyber Kill Chain for

OpenFlow, and different applicable tactics are selected from the MITRE ATT&CK and

MaGMa frameworks, included as an ANNEX.

Cybersecurity solution is described as deployed and integrated in the prototype environment.

Actual stage of the project includes a SIEM agent in an endpoint with the emulated OpenFlow,

that collects logs, detects the security events and sends them to the SIEM server, where this

information is collected, normalized and correlated, so that security alerts are raised based on

their criticality. These alerts are latter sent to the SOAR system, where they are further

investigated to allow the appropriate case management and reactive response.

SIEM and SOAR interconnection are built up using opensource software with Wazuh and

TheHive, described as cybersecurity toolkit. Finally, an example of the Brute Force technique

is presented, showing the full chain of detection and response by the ODIN Cybersecurity

System for this attack.

ODIN 101017141

-8-

1. INTRODUCTION

This deliverable describes the concept, features design and implementation of the ODIN

Network Component, focusing in the initial prototype as well as presenting the design of the

final version. The design and development of the Network Component follows an agile

approach and its design follows closely the design and development of the other ODIN modules

as well as the ODIN Pilot Cases. The ODIN Network Component is presented from the

perspective of its two modules. More precisely the OpenFlow initial prototype is presented in

section 2 and the Cybersecurity module that is presented in section 3.

The OpenFlow initial prototype is comprised of the initial prototypes of the Knowledge

Repository, the OpenFlow Core component, the OpenFlow emulation engine and the

OpenFlow UI. It is responsible to integrate the software system of the ODIN architecture and

orchestrate ODIN modules to robustly and efficiently execute the production schedule.

The OpenFlow is a functional initial prototype that also demonstrates integrated functionalities.

In particular it has been used in the preliminary White Goods small case demo (M12) and in

M18 White Goods and Automotive small scale integrated demos in M18 of project

development. The initial prototype used as input the ODIN Reference architecture described in

D1.4 and provides most of the presented functionality in Network Component of D1.4 too. The

functionalities which have been used in the M18 Pilot Cases are presented in Section 2.

ODIN OpenFlow is a robust integration platform that orchestrates and monitors Human-Robot

Collaboration (HRC) systems and their modules to safely execute a manufacturing process and

respond to real-time unprecedented evets taking place through the process. The ODIN

OpenFlow based integrated system is composed by four main components. Figure 1 presents

the high-level abstract components described in ODIN Reference Architecture in D1.4.

The transition of ODIN features from WP2 and WP3 to actual data models and interfaces is

based on technological partnersô collaboration. These interfaces were described in ODIN

Project Architecture and are presented in Section 2.2.7.

The initial prototype of OpenFlow has been released as a docker image hosted in a private

docker repository of LMS for distribution only inside the ODIN consortium and for the project

needs. Further to this version, an initial version was developed for the preliminary White Goods

demo that allowed integration and testing. Additionally, it was used to get early feedback from

developers and pilot case responsible partners.

More information is provided in section 2 of this document, which provides a detailed overview

of the current implementation state of OpenFlow module as well as the direction for future

development, although the design and planning of the developments in WP4 mostly take place

in an agile way. In particular Section 2 describes the architecture followed in the

implementation of OpenFlow and presents the following:

¶ Design and development of OpenFlow sub-modules.

¶ Implemented interfaces to described server modules presented in ODIN Project

Architecture.

¶ Distribution of ODIN OpenFlow integrated system through docker images.

¶ ODIN implemented features offered by the current implementation of OpenFlow

module.

ODIN 101017141

-9-

Figure 1: ODIN Reference Architecture - Component Level Diagram

The ODIN Cybersecurity initial prototype is described in section 3. Section 3.2 presents its

three main features, namely the threat modelling, detection and protection. Section 3.3 presents

the design of the system, through the attack modelling methodology, the solution architecture

and the validation. Finally, section 3.4 describes the initial prototype through the prototype

environment, attack scenario and detection and response solution.

ODIN 101017141

-10-

2. OPENFLOW

2.1. Introduction
This section aims to present the OpenFlow first prototype module, and details of the

orchestration process that takes place under the hood. In addition, this section describes the

user interface (UI) of OpenFlow first prototype, including the visualization of the orchestration

process. The first prototype version of the OpenFlow module has been based on the OpenFlow

Architecture as well as the ODIN Architecture specifications of D1.4. OpenFlow interoperates

and manages different ODIN modules to the features that are presented in Section 2.2. These

features were presented in D1.4 and are implemented through the development phase of WP4.

Table 1 summarizes the OpenFlow features.

Table 1: OpenFlow features

OpenFlow Features
Orchestrate Modules and Resources

Emulation

Simulation

React on Shopfloor Events

React on Safety Events

React on Security Events

Control & Monitor Task and Action Execution Flow

Monitor Network Software Modules Status

Control OpenFlow Execution Flow

Request Replanning

Validate Open Schedules

OpenFlow Knowledge Repository

Information Exchange with ERP systems

User Interface

Due to its modular architecture, the OpenFlow integration software system is flexible and

extensible to support, with low effort, new functionalities and adjustments to modules that

aroused through the development and testing phase in small-scale pilot cases. This also adheres

to the norm induced from the increasing product variety in an industrial environment [3] and

the need of mass customization to be able to handle such ranges in different products

manufacturing process [1,2].

Following the context of modern Industry 4.0, OpenFlow modules offer interfaces for the

actuation of Actions and their ñactuatorò subject. For instance, OpenFlow can orchestrate

actuator submodules by communicating with them and initiating an actuation model by an

Action or cancel an already ongoing action. The design and integration principles for such

behaviour are presented in Section 1.1.

Finally, Section 2.4 presents the current version of OpenFlow, with the designed and

implemented features through WP4 until the scope of this deliverable on M18 of the project.

ODIN 101017141

-11-

2.2. Features
This section describes the currently designed features as well as the implementation status of

the first OpenFlow prototype.

2.2.1. Orchestrate Modules and Resources

Orchestrating different modules is an essential process in a human-robot collaborative

environment, and it has been demonstrated in use cases derived from the automotive industry

in which human operators involved into and were part of the manufacturing process [6,7].

OpenFlow is the module responsible for the orchestration of other modules, as described in the

ODIN Reference Architecture in D1.4. An OpenFlow based system is composed from different

submodules that have to be monitored and orchestrated. OpenFlow utilizes peer-to-peer and

publish-subscribe communication protocols to enable centralized control of its submodules.

The orchestration engine that manages OpenFlow modules is part of the OpenFlow Core

submodule, and it is responsible for the features presented in this section. The main objective

of the orchestration module is to successfully execute a production Schedule in order to

complete a pre-defined manufacturing process. Therefore, besides orchestration, OpenFlow

takes into account real-time data about the availability and suitability of manufacturing

resources, to safely execute the required actions.

The OpenFlow is capable to change the execution flow of a production process, react to events

and dispatch appropriate actions to ensure that the production is complete.

Figure 2: OpenFlow modules orchestration

Figure 2, depicts in high level the internal modules ɞf OpenFlow. The OpenFlow User Interface

is described in detail in 2.2.14. The OpenFlow Knowledge Repository, which is responsible

for persisting the required data is presented thoroughly in 2.2.12. OpenFlow Emulation Engine

can imitate the execution of a production Schedule in an emulated environment for testing

purposes by emulating all necessary interfaces and resources and it is presented in section 2.2.2.

Planning the production is a key functionality of production system. OpenFlow integrates and

interoperates closely with the AI Task Planner module which is in charge of planning and

ODIN 101017141

-12-

replanning the Tasks that need to be performed. For the purpose of execution, these Tasks into

Actions are converted in executable production Schedules. This process is depicted in 2.2.10,

while the Task Planner User Interface allows the User to manually adjust and create a

production Schedule.

2.2.2. Emulation

The OpenFlow includes an emulation engine that can create and start responsive emulated

interfaces for all OpenFlow managed resources (Figure 2). The OpenFlow emulation engine

emulates the interfaces of other modules and their responses providing a realistic emulation

environment with an API identical to the real one.

In this way the OpenFlow can setup an emulated (virtual) environment that is comprised of

emulated modules and execute an OpenFlow production Schedule in the emulated

environment.

The emulation is focused in the communication and information exchange between modules.

Execution of Schedules in virtual environments where the modules are represented in more

detail, including the space geometry can be handled also by OpenFlow in the simulation

functionality that is covered in section 2.2.3.

In addition to the actual process orchestration in real production applications, the need of

emulating a robotic environment is also important in multiple occasions. Emulation allows for

validation of the cohesion between Schedules Actions prior to their actual execution. The

emulation can run not only in the nominal duration of the real time execution but also in much

less time. This means that an emulated execution of a complete schedule only requires a

fragment of the time the actual execution takes, thus speeding up the testing and development

process.

The emulated modules comply with ROS and have specifically assigned node names.

For instance, the emulated module interfaces that are managed and emulated by OpenFlow for

the successful implementation of the White Goods demo in an emulating environment are

displayed in Table 2 below.

Table 2: White Goods preliminary demo, ActionLib server ROS Nodes

Action Name ActionLib server ROS Node path

Execute Human Task /emulation/operator_support/integration/node/execute_human_task

Control Gripper /emulation/gripper/integration/node/control_gripper

Control Tool changer /emulation/tool_changer/integration/node/control_toolchanger

Move Arm Joint /emulation/cobot/integration/node/move_arm_joint

Configure Payload /emulation/configure_payload/integration/node/configure_payload

Configure TCP /emulation/configure_tcp/integration/node/referenced_execution

2.2.3. Simulation

While Emulation (presented in section 2.2.2) is mimicking the complete sequence of steps

required for the execution of a production Schedule, which is beneficial for testing and

development phases, it is essential to further test a production Schedule on a simulated

environment prior to its actual deployment in a real scale robotic application. A simulated

environment visualizes the real environment into a 3D software world in which the actual

movement of a robot resource can be tracked, and its interference can be tested with any other

physical 3D object in its surroundings. Simulationôs goal is validating and verifying any

ODIN 101017141

-13-

concerning factors in a robotic product line environment prior to their actual installation so that

the optimal configuration can be selected [2].

OpenFlow can connect and control resources that are simulated. The actions required for the

completion of a production Schedule on a real or emulated environment, are interfaced in a

simulating mode too. Additionally, specific simulating actions have been designed and

implemented to interface and aid the management of 3D objects. Table 3 below presents the

interfaced Actions that initiate a simulation and spawn or remove an object in the simulation

scene.

Table 3: OpenFlow Simulating Interfaces

Client

Module
Implemented Interface Description

Server

Module

OpenFlow Simulate Initiates simulation

Digital

Simulation

OpenFlow Spawn Dynamic Object
Spawns a Dynamic Object on a

simulation scene at specific Pose.

OpenFlow Vanish Dynamic Object
Removes Dynamic Object from a

scene.

OpenFlow
Control Assembly

Hierarchy

Control Assembly Hierarchy in

Simulation Environment

2.2.4. React on Shopfloor Events

Validated use-cases have shown that monitoring of shopfloor events is a highly regarded factor

to consider while designing and implementing mobile robotic applications in the automotive

industry [4].

OpenFlow module is capable of coordinating and orchestrating external resources to monitor

and respond Shopfloor Events. In current iteration of D4.1 through M18, a first prototype with

basic functionality has been implemented and will be further developed and integrated with the

appropriate models to react on shopfloor events in the future.

2.2.5. React on Safety Events

OpenFlow has a dedicated Safety module to address safety Events that can arise at any stage

during the execution of a production Schedule. This module has a very short latency to capture

and address security triggers as fast as possible and provide solutions to recover the system and

continue the manufacturing production. In current development stage, there is a test safety

module which will be further improved and developed to address actual safety events in the

future.

2.2.6. React on Security Events

In a production line environment in which human and robots share workspace [5], the need to

react on security induced events is essential.

OpenFlow offers interfaces to specific event topic listeners and can monitor and evaluate

arrived message and provide specific tailored response to address such events. Responses to

events may include the following:

ü Email notifications about security events.

ü Actuation of other implemented action interfaces required to address a security raised

event.

ODIN 101017141

-14-

ü Stop or resume a production Schedule according to the security event type or severity.

ü Notify Operators about security events.

To address the Security events OpenFlow implements the following interface for the security

topic as described in ODIN Project Architecture.

Table 4: OpenFlow security interface

Client

Module

Implemented

Topic

Interface

Server Module

OpenFlow Security

Event
Cyber Security

Messages that arrive to this topic include specific event ID, event type and severity level upon

which a Subscriber ROS Node on OpenFlow will associate specific patterns and raise the

respective alert Events.

2.2.7. Control & Monitor Task and Action Execution Flow

OpenFlow has the ability to coordinate, monitor and execute a stored production Schedule

through its orchestrator module. Orchestrator leverages the Actor model to handle the actuation

of Scheduleôs actions as this offers immutable data exchanging during execution which is

considered a quite robust feature for communication in a robotic environment [8].

OpenFlow utilizes customizable data models for each implemented action. Such data models

use the required interface protocol to connect with different modules interfaces. In ROS-based

systems, such as the ODIN, the ActionLib protocol is often used because it allows Clients to

control, configure actionôs goal and receive status updates during and after the execution of

each action [8]. Multiple interfaces are currently consumed by the OpenFlow module. Table 5

below contains the interfaces whose clients are currently offered by OpenFlow to the modules

described in ODIN Project Architecture.

Table 5: OpenFlow Implemented Action Interfaces

Client Module Implemented Interface Server Module

OpenFlow Move Arm to TF Frame

Cobot
OpenFlow Move Arm Joint

OpenFlow Move Arm Cartesian

OpenFlow Control Arm Mode

OpenFlow Execute Skill
Easy Programming

OpenFlow Execute Skill Referenced

OpenFlow Configure Tools

End Effector

OpenFlow Control Arbitrary Tool

OpenFlow Control Gripper

OpenFlow Control Tool Changer

OpenFlow Trigger Screwdriver

OpenFlow Detect Object Environment Perception

OpenFlow Configure Detection Human Detection

OpenFlow Move Arm Cartesian
Mobile Robot

OpenFlow Move Arm Joint

ODIN 101017141

-15-

Client Module Implemented Interface Server Module

OpenFlow Navigate

OpenFlow Control Trajectory Tracking

Operator Support

OpenFlow Execute Task Synchronous

OpenFlow Execute Task Synchronous Referenced

OpenFlow Operator Support display configuration

OpenFlow Show Notification

OpenFlow Set Safety Border Projection

Projector Interface

OpenFlow Set Light Indication Projection

OpenFlow Set Preset UI Projection

OpenFlow Set Instructions Projection

OpenFlow Set Virtual Buttons Projection

OpenFlow Unset Any Projection

OpenFlow Cartesian Goal Motion Control

Task Planning
OpenFlow Joint Goal Motion Control

OpenFlow Referenced Goal Motion Control

OpenFlow Task Planning

The actions Clients are implemented with extensibility and maintainability in mind so that any

new requirements (e.g., new field attributes in actions definition) can be easily integrated into

the existing data models with minimal effort. Additionally, configuration options, such as if an

action can be paused or not while its active and what actions may be executed after each action,

offer control upon the Scheduleôs execution flow. These configuration options are persisted

alongside the Scheduleôs actions in Knowledge Repository 2.2.12.

OpenFlow UI takes over of OpenFlowôs under the hood features and offers a user-friendly

interface to visualize execution flow of a Schedule to user by displaying status for each Task

and Action of a production Schedule. OpenFlow UI is thoroughly presented in 2.2.14.

2.2.8. Monitor Network Software Modules Status

As OpenFlow system is itself a modular system and part of the ODIN software system, it can

constantly monitor the status of other modules and communicate with specific actuator

components of other modules to address temporary failures. This feature is currently under

development and will be included in feature releases. The current draft implemented version

can react when a moduleôs software interface cannot be accessed by attempting to reconnect.

This behavior is configurable and can be customized to fit different scenarios.

Future versions will be able to detect in advance the status of specific modules and the available

services and react on specific occasions. For instance, trigger a rescheduling in case a cobot

module is not available so that the AI Task Planner could request a human to execute a task

instead.

2.2.9. Control OpenFlow Execution Flow

OpenFlow Core has the ability to initiate the execution of a Schedule or pause, stop or cancel

it while its running and resume gracefully when it is paused. To achieve such functionality

OpenFlow implements interfaces for the following ROS Action Servers:

¶ Start New OpenFlow Schedule Execution

ODIN 101017141

-16-

This service takes as input the id of a stored Schedule inside Knowledge Repository or a

completely new Schedule in json format and starts its execution, while it allows for

execution status to be updated through feedback and result definition in Action file.

¶ Control OpenFlow Schedule Execution

This service takes as input the id of the running Schedule and a specific type of command

which can be resume, pause, stop or cancel the execution. Pause and resume options are

mutually dependent as they require the schedule to be running or stopped. Cancel option

stops the active Tasks and actions. These options are exposed in the OpenFlow User

Interface through buttons and are presented in Figure 9 and Figure 10.

2.2.10. Request Replanning

OpenFlow has the ability to communicate with the AI Task Planning module to request the

replanning of a Schedule that is paused either by the user or triggered by an event that

OpenFlow had to stop the execution. Replanning can be invoked only on a stopped a Schedule.

OpenFlow invokes the Task Planning ROS Action Server of AI Task Planning module which

uses the remaining unfinished Tasks and available Resources to create a new Schedule as

described in D1.4. Once OpenFlow retrieves the new Schedule, it stores it in Knowledge

Repository as an available Schedule for execution. Afterwards Schedule is loaded for execution

and displayed in OpenFlow UI as a new Schedule. User can take any actions offered by

OpenFlow on this Schedule as on any other regular Schedule. Figure 3 presents the data

exchange between OpenFlow and AI Task Planning module.

Figure 3: OpenFlow: Request Replanning

The development of the AI Task Planning advanced functionality is currently work in progress.

The first set of designed interfaces have been developed and are included in the OpenFlow

initial prototype.

2.2.11. Validate Open Schedules

OpenFlow can validate Schedules in Knowledge Repository before their execution to ensure

their integrity and cohesion. As described in 2.2.7, OpenFlow uses the Actor model to manage

ODIN 101017141

-17-

the actuation of Scheduleôs tasks and actions. In order for the Actor responsible to execute the

Schedule to be created, this validation check is required. The validation can inform about

syntactic errors and prevent the execution of erroneous schedules. The validation functionality

not only informs that there are errors but also provides some information that help identify the

source of the error.

A Schedule consists of many interconnected metadata residing inside Knowledge Repository

such as its Tasks, Actions and Resources, of which are often referenced during execution

through their unique identifier ID. Some of the validations and verification checks are the

following:

ü Verify that all collections of Actions, Resources and Tasks of a Schedule are populated

and not empty.

ü Verify that the Actions identifiers IDs for each set of next Actions to execute, can be

identified and sourced to actual Actions that exist in KR.

ü Verify that the Actions identifiers IDs which are part of a Task, can be identified and

sourced to actual Actions that exists in KR.

2.2.12. OpenFlow Knowledge Repository

OpenFlow Knowledge Repository (KR) module is a submodule of OpenFlow and is

responsible for modelling and maintaining the required information for OpenFlow core

functionalities. This information ranges from Users and Product Plans to Schedules, Resources

and network interface definitions. KR is designed following the Domain Driven Design (DDD)

whereas for each OpenFlow specified domain context it offers factories, repositories and

services for efficient Create, Read, Update, Delete (CRUD) operations of domains [11]. KR

utilizes MongoDB to implement the aforementioned functionalities.

Figure 4 shows part of the data Model implemented in KR for Users, Product Plans and

Schedules for execution.

Figure 4: OpenFlow KR: User, Product Plan, Schedule Data Model

Additionally, Knowledge Repository maintains and imports the datasets required for all ODIN

Pilot Cases. Such datasets include among others the required tasks, resources and suitabilities

ODIN 101017141

-18-

following the architecture in D1.4. In the scope and implementation of current deliverable the

preliminary White Goods and Automotive M18 pilot cases are persisted in KR.

For instance, the set of Tasks persisted in Product Plan of the preliminary White Goods pilot

case, following the requirements specified in D1.1 and adjustment iterations following the agile

approach, are presented in Table 6 below.

Table 6: White Goods preliminary demo tasks

White Goods Preliminary demo Tasks

Get Parallel Gripper

Pick Knob from kitting table

Place Know to assembly table

Leave Parallel Gripper

Get Magnetic Gripper

Pick Transformer from kitting table

Place Transformer to assembly table

Pick Medium Cooktop from kitting table

Place Transformer in the oven

Place Medium Cooktop assembly table

Pick Big Cooktop from kitting table

Place Big Cooktop to assembly table

Pick Small Cooktop from kitting table

Place Small Cooktop to assembly table

These Tasks, alongside with their Resources and Actions are used to generate an execution

Schedule which is stored in Knowledge Repository too [8]. Furthermore, Knowledge

Repository stores the Action models described in 2.2.7.

2.2.13. Information Exchange with ERP systems

For the seamless integration of ODIN OpenFlow in a manufacturing environment, the need to

communicate and receive product and resources information from external software systems

has been described in D1.5. Such systems include ERP, PLM, MES and SCADA.

OpenFlow has the ability to connect with an external ERP system based on SAP and receive

required information for production orders. This feature is currently under development and

during WP4 through M18, a connection has been established with the ERP system of

AEROTECNIC utilizing Java interfaces of SAP Java Connector module.

Information through the established connection included quantity, production number and due

time of a production order and the data OpenFlow will be able to share with ERP consist of

order status updates and an estimation of the expected successful completion of the order.

Additionally, data retrieved would include the locations on the shopfloor a Fan Cowl has to be

transported by mobile robots during its order execution. Figure 5 below presents the

aforementioned information exchange with the ERP system.

ODIN 101017141

-19-

Figure 5: Information Exchange with AEROTECNIC - SAP

2.2.14. User Interface

OpenFlow User Interface (UI) is the central getaway between the OpenFlow and the user. It

offers a user-friendly environment to control, monitor and view information such as the

available Product Plans, Execution Schedules and Resources.

The OpenFlow UI consists of five main Tab pages that provide functionality related to the

concepts described above. Table 7 below presents the navigation tabs in the OpenFlow UI main

page.

Table 7: OpenFlow UI: Navigation Tabs

Tab Name Description

Execution Status Monitoring and controlling execution of Schedules

Schedules Schedule selection & information

Product Plans Create Schedules from available Product Plans

Resources Available Resources and Network Resources

2.2.14.1. Login Page

Figure 6: OpenFlow UI: Login Page

Login Page offers a user-friendly, simple login functionality to OpenFlow UI. Currently users

belong to one company and can only view the information of the company they belong to. One

company per pilot case has been created. Upon logging in, the OpenFlow redirects the user to

ODIN 101017141

-20-

the Schedules Tab. The user can create new Schedules by navigating to the Product Plans tab

and select to plan a new Schedule as described in section .

2.2.14.2. Schedules Tab

Figure 7: OpenFlow UI: Schedules Tab

The Schedules Tab displays all the available schedules that are visible to the user. A Schedule

can be generated from the AI Task Planner for a specific Product Plan. The Schedules Tab

offers access to visual representations of the required Resources of each Product Plan and

information about these Resources, Scheduleôs Tasks and Actions and Events. Finally, this tab

offers the functionality to select a Schedule for execution by clicking the related ñSelectò button

in the Execution column.

2.2.14.3. Execution Status Tab

The OpenFlow UI Execution Status Tab provides information about a running schedule and

offers control options to the user, effectively allowing to control the production execution. The

Execution Status Tab is only enabled if a schedule is selected for execution. For instance, the

Execution Status Tab is not enabled in Figure 7. In order to see the status tab, the user needs to

select a Schedule as described in section 2.2.14.2. Selecting a Schedule will enable and redirect

to the new Execution Tab shown in Figure 8, that shows an instance of the enabled Schedule

Status Tab.

Figure 8: Open Flow UI: Execution Status Tab

ODIN 101017141

-21-

The OpenFlow UI Execution Status Tab enables the control of a Schedule and offers

visualization of the execution in Task level or in the Action level which is more detailed.

¶ Controlling the execution of Schedule.

Start button starts the execution of the selected Schedule and enables the Pause-Resume &

Cancel buttons.

While the Schedule is running, the User has the option to pause the current execution and

resume it later on demand.

Figure 9: Options while Schedule is running

The Pause button is replaced by the Resume option if the Schedule is already paused as

shown in Figure 9. The Cancel Button cancels the Tasks & Actions that are active. The UI

Controls are then updated to only allow the user to Start the Schedule from the first Task

again.

Figure 10: Options while Schedule is paused

Additionally, when the Schedule is paused or stopped, the User can reschedule the

remaining Tasks as a new Schedule ready for execution through the Reschedule button in

Figure 8.

¶ Schedule Status Visualization functionality

The Execution Status Tabs offers real time monitoring on the status of Tasks & Actions as

well as visualizing the Schedule in a Graph.

o Task Execution Status

Figure 11: Tasks Execution Status

ODIN 101017141

-22-

While the Schedule is running, the status of the Tasks is constantly updated to show the

actual execution status. The Tasks consist of many actions and offer a higher level of

abstraction and observation. The screenshot in Figure 11 shows tasks in different status

at the same screen.

Figure 12: Actions Execution Status

o Action Execution Status

Similar to the Task Execution Status, the Actions Execution tab panel displays actions

names, their resources and Task and their status as shown in Figure 12. The Actions are

atomic execution steps that are part of a higher-level Task abstraction.

o Actions & Tasks diagrams

The OpenFlow UI can graphically depict the Execution Schedule in either Action or Task

level granularity. Actions and Tasks diagram option in Execution Status Tab offers

visualization of the sequence of required actions and tasks respectively in order to

execute a complete Schedule. A new diagram is generated for each case and a new page

will load displaying the respective graph. Figure 13 shows the task diagram of the

preliminary White Goods pilot case. Due to the size of the diagram a zoomed in part has

been added.

ODIN 101017141

-23-

Figure 13: White Goods preliminary pilot case demo - Tasks diagram

2.2.14.4. Product Plans Tab

Product Plans tab displays the available Product Plans to a logged in User, which as described

in 2.2.12. maintain the necessary data that can be used to generate a Schedule. Figure 9 shows

the available product plans for White Goods pilot case. Each Product Plan can be used to

generate a Schedule through the Plan New Schedule option.

ODIN 101017141

-24-

Figure 14: Open Flow UI: Product Plans Tab

If the User logins into the OpenFlow UI for the first time, he has to create a Schedule through

Product Plans tab.

2.2.14.5. Resources Tab

Resources Tab displays all available resources to the company the User belongs to, which can

be assigned as resources in Tasks and Actions of Schedules. Figure 15 shows the Resources of

White Goods pilot case as described in 2.2.12.

Figure 15: Open Flow UI: Resources Tab

Additionally, Modules column on each resource displays the available Network Resources that

can be utilized from this resource in a Schedule. Figure 16 shows the available ActionLib

Servers of ur10-Cobot for White Goods use case.

