BB Ref. Ares(2023)8907613 - 30/12/2023

Open-Digital-Industrial and Networking pilot lines using modular
components for scalable production

Grant Agreement No
Project Acronym
Project Start Date

Consortium

Title
Reference
Availability
Date
Author/s
Circulation

7

101017141
ODIN
1%t January, 2021

UNIVERSITY OF PATRAS - LABORATORY FOR MANUFACTURING
SYSTEMS AND AUTOMATION

FUNDACION TECNALIA RESEARCH & INNOVATION
KUNGSLIGA TEKNISKA HOEGSKOLAN

TAMPEREEN KORKEAKOULUSAATIO SR

COMAU SPA

PILZ INDUSTRIEELEKTRONIK S. L.

ROBOCEPTION GMBH

VISUAL COMPONENTS OY

INTRASOFT INTERNATIONAL SA

GRUPO S21SEC GESTION, S.A.

FUNDACION AIC AUTOMOTIVE INTELLIGENCE CENTER FUNDAZIOA

DGH ROBOTICA, AUTOMATIZACION Y MANTENIMIENTO
INDUSTRIAL SA

PSA AUTOMOBILES S.A.

AEROTECNIC COMPOSITES SL. U.
WHIRLPOOL EMEA SPA

WHIRLPOOL MANAGEMENT EMEA SRL

RS
o N
/00

ODIN Networked Component final version

D4.3
Public
30/12/2023

INTRA, S21SEC
EU, Consortium

Summary:

The purpose of this document is to present the design and final prototype of:
a) OpenFlow communication and integration architecture and
b) Active DT Protection Framework and DT Intelligent Threat Analysis Toolkit

ODIN 101017141

Table of Contents
LIST OF FIGURES........ootiiitt ettt bbbttt b bbbt 3
LIST OF TABLES ..ottt sttt ettt e ettt e st e e neeneane e 4
EXECUTIVE SUMMARY ..ottt sttt sttt e esaesessastessestessensensessessnsansens 5
1. INTRODUCTION ..ottt sttt st b et b et ereene et 6
2. OPENFLOW ...ttt b bbbttt b bbb et ne st 7
2 O 1011 €T [FTox o o IO PRRSRORPRN 7
2.2. FINAL PIOTOTYPE ..ottt ettt ene s 8
2.3. FUNCHIONAITTIES OVEIVIEW.....ecuieieieeiie ettt sttt steere et nne s 8
B TS0 o o 1| OSSR 9
2.3.2. SCNEAUIES VIBW.....c.eeiiiiieiiciicie et 9
2.3.3. EXECULION STALUS VIBWoveivieeiesieetieiie sttt sttt ste e seesnaenne s 12
2.3.4. Product Plans OVEIVIEW............coierieieieisiesiesie ettt esnesne s 20
2.3.5. RESOUICES VIBWvveviiieiiieite sttt sttt sttt sttt enenne s 21
2.3.6. SEALISLICS VIBW .eeiieieciecie ettt sttt sresna e 23
2.3.7. DEteCted ISSUES VIBW.....c..eiveeeieiesie et st ste st ste et ste et seeenaenne s 24
2.3.8. ERP CONNECLION DELAIISc.eoviieiieieieieiesccie et 26
2.3.9. Digital ReSoUrce DESCIIPLIONSoverierieieriiiieiienie e eeneeneas 27
2.4. Technologies & IMpIeMENtationccoeiiiiieieiieee e 29
3. CYBERSECURITY ittt sttt et e e sa e e sate e st e e anreeeanes 31
K T O 1011 €T [FTox o o OSSPSR 31
3.2. Monitored endpoint PrOTOTYPEcvrviriiiieieieie et 31
Bi2. 1. DIBSIGN ittt bbbt e et ere s 32
3.2.2. FUNCLIONAITTIES OVEIVIBW ..ottt snee e 32
3.3, SIEM PrOLOLYPIE ...ttt bbbttt sb et b e bbb nnas 33
3.3 L. DIBSIGN ittt bbb bt ere s 33
3.3.2. FUNCLIONAITTIES OVEIVIBW ..ottt et s 34
3.4, SOAR PIOIOLYPE ...ttt ettt b e bt e s et e bt e b e e st e e sbeeebbeanbeebeen 38
BuA. L. DBSIGN ittt bbb et n e ere s 38
3.4.2. FUNCLIONAITTIES OVEIVIBW ..ottt s 39
4, CONCLUSIONSottt et bbbttt bbb b e e e e ese st 40
B, GLOSSARY .ottt ettt ettt Re R et e tente et et eneeneeneareas 41

6. REFERENGCESo 42

ODIN 101017141
LIST OF FIGURES

Figure 1: OpenFIow UL LOQIN PAQE......civiiiiieiiecie et 9
Figure 2: OpenFlow Ul: ScheduleS OVEIVIBWcocooiiiiiiiiiiieicee s 9
Figure 3: Task Level Schedule Diagram - White Goods Pilot Case...........ccccceevvevverieieennnn, 10
Figure 4: Actions Level Schedule Diagram — White Goods Pilot Case..........cccccevvrvereennene. 11
Figure 5: Schedule — EVENES OVEIVIEWcccuieiiiieiiecie et 11
Figure 6: Schedule — Detailed EVENS VIEWccouiiieiiiiieiiee e 12
Figure 7: Open Flow Ul: Execution Status View - Whitegoods Pilot Casecccceeu..... 13
Figure 8: Options while Schedule IS ruNNINgccooiiiiiiiiiii e, 13
Figure 9: Options while Schedule IS PAUSEdccoeiveieiieieeic e 14
Figure 10: OpenFlow WebSocket information Streamccccooeveiinenenenenesescseeeee, 14
Figure 11: Tasks Execution Status — White Goods Pilot Casecccccvevvveveiieeveeciesienen, 15
Figure 12: Actions Execution Status — White Goods Pilot Casecccccceveniiinininieceennn, 15
Figure 13: Action INfOrMAtionccoveiiiiiiicie e 16
Figure 14: Task INFOIMALION..........cc.iiiiiiiiiieee e 16
FIGUIE 15 EVENE LOUS ... vieieiiiiiiece ettt sttt te et e te e snaesteenneeneenne e 16
Figure 16: Tasks Level Schedule Visualization diagram — Whitegoods Pilot Case............... 17
Figure 17: Tasks LIVE Graph.......cccccouiiveii it 18
Figure 18: ACLIONS LIVE Graph........cccooiiiiiiiiieieeee et 19
Figure 19: Actions Live Graph (action information)cccccevveiieie i 19
Figure 20: Tasks Live Graph (task information)...........ccoccoeririiiniiiine e, 20
Figure 21: Open Flow Ul: Product Plans View (Automotive Pilot Case)c.cccceeveenne.n. 21
Figure 22: Open FIOW UL RESOUICES VIBWcuviiiiiieiieiiesie st 21
Figure 23: Open Flow UI: Resource’s modules...........ccoovvviiiiiiiiiiiciiiiccc 22
Figure 24: Network Resource INfOrmation ..o 22
Figure 25: Schedule StatiStICScciveiiciiciccece e 23
Figure 26: Schedule Aggregate STatiSTICS.cueiriiiriirererierii e 24
Figure 27: DeteCted ISSUES VIBW.........ccuviiiiiieiieeie sttt ste ettt sre e reenae e 24
Figure 28: Detected ISSUES - ROS TOPICSvvvuieiiiiiieienie sttt 25
Figure 29: Detected Issues - ROS ActionLib SErvers.........cccoivciievciieceece e, 25
Figure 30: ERP CONNEBCTION.......ouiiiitiiiiieie ettt 26
FIgure 31: ERP OF0er PrOQIESSciveiuieieiieeiteeieseesteeitestte sttt staeresraesaeeaesneesreennesraenneans 26
Figure 32: OpenFlow Ul - Digital Resource Description Resources Table screenshot......... 27
Figure 33: OpenFlow Ul - Digital Resource Description Resources Functionality 28
Figure 34: OpenFlow Ul - Digital Resource Description Standards Table screenshot 28
Figure 35: OpenFlow Ul - Digital Resource Description Standards functionality 29
Figure 36: ODIN cybersecurity module architecture (final version)ccccoovvvviniininennn, 31
Figure 37: Monitored endpoint architecture (final VErsion)..........ccccooevieiiieiie i 31
Figure 38: Alert checker MOdUIES ... 32
Figure 39: SIEM architecture (final VEISION)cccoiiiiiiiiiie e 33
Figure 40: SIEM installation and coNfiguIration.............cccooeiiiiiiniiienee e, 34
Figure 41: ODIN CUSTOM AECOUEIS......ccvviiuiieiiecire ettt ettt re e saeeaaeesrae s 35
Figure 42: ODIN Security — Custom RUIES 1/2ccooiiiiiiiiiiieieee e, 36
Figure 43: ODIN Security — CUStom RUIES 2/2ccoooiiiiiiiiiie e 37
Figure 44: Custom SOAR INTEQIratiONccueieerieiieieerie et nae e 37
Figure 45: SOAR architecture (final VEISION)ccoooveiiiiriiiie e 38
FIgUre 46: SOAR TESIGNveoieiieeie ettt ettt et e e e e sneesreeneesraenseens 38
Figure 47: Example of observable type IP address.........ccccoviiiiniiiie i 39
Figure 48: Responders IMPIeMENTE...........cueiveiiiieiieic e 39

ODIN 101017141

LIST OF TABLES
Table 1: OpenFIOW fRALUIES SLALUSccvveveieeiecie ettt re e 7

ODIN 101017141

EXECUTIVE SUMMARY

This document describes the ODIN Networked Component final version, which is the result of tasks
T4.1 “Reference integration and communication architecture for reconfigurable production” and T4.2
“Cybersecurity and data processing in autonomous production environments”. The “ODIN Networked
Component” is comprised of the following two software modules.

a) The OpenFlow module, which is responsible to integrate, orchestrate, manage and coordinate
production resources to execute manufacturing schedules, and

b) The Cybersecurity module, which is responsible to provide detection and response capabilities on
the deployed Networked Component.

The final prototype of the OpenFlow module offers integration, orchestration and
management/configuration functionalities. The initial prototype of OpenFlow module includes the
following functionalities:

Orchestration of Modules and Resources,

Emulated execution of a production schedule,

Simulated execution of a production plan in a 3D virtual environment,

Recovery strategies and system level reaction on different types of events, such as shopfloor
events, execution failure events, safety violation events, security events.

Control, Monitor Task and Action Execution Flow,

Monitoring of Network Software Modules Status,

Controlling of OpenFlow Execution Flow,

Request execution task replanning,

Validation of Open Schedules,

OpenFlow Knowledge Repository,

Information Exchange with ERP systems,

Ul offering control, monitoring, and views of OpenFlow functionalities to end user.

The final prototype for ODIN Cybersecurity solution includes both the process and methodology for
ODIN threat modelling and the cybersecurity toolkit for incident detection and response.

The threat modelling for ODIN Cybersecurity follows threat modelling paradigms such as the MaGMa
[18] and MITRE ATT&CK [19].

The Cybersecurity module includes both incident detection and incident Response functionalities.

The final prototype of the ODIN Networked Component offers essential and core integration,
orchestration and cybersecurity features in the ODIN system. The ODIN Networked Component has
already been used verified in the context of the ODIN Pilot cases development and preliminary ODIN
Pilot cases and will be used and will be used to integrate, orchestrate and secure the developments in
all the ODIN Pilot Cases.

ODIN 101017141

1. INTRODUCTION

The transition from mass production to mass customization has indicated the need of deploying
flexible manufacturing systems that are able to handle multiple product variants [1].

In an increasingly fast-paced and ever-changing global market, advanced collaborative and flexible
manufacturing is a strong competitive advantage. The ODIN project aims to bring a flexible, modular,
and scalable solution for the manufacturing industry. The ODIN project proposes a solution that
includes the following four components:

The ODIN Digital Component
The ODIN Open Component

The ODIN Industrial Component
The ODIN Networked Component

This deliverable, namely D4.3 “ODIN Networked Component final version”, describes the concept,
features design and implementation of the final version ODIN Networked Component. The design and
development of the Networked Component followed an agile approach and was performed in tandem
with the design and development of the other ODIN modules and in parallel with the ODIN Pilot Cases
developments.

The ODIN Networked Component is comprised of the following modules.

e The OpenFlow module whose final prototype is presented in section 2 and
o the Cybersecurity module whose final prototype is presented in section 3.

The final prototype of the OpenFlow module provides many functionalities related to the integration,
orchestration, monitoring and control of the resources and software modules in the shopfloor. In
addition, it provides connection to external, systems such as ERP. It has been successfully used in the
integrated developments for the pilot cases. In particular, it is used in White Goods, Automotive and
Aeronautic Pilot cases.

The final prototype follows the ODIN Reference architecture described in D1.4. An earlier version
OpenFlow module has been described together with details about the module design in D4.1 “ODIN
Networked Component initial prototype”. OpenFlow architecture offers centralized coordination,
orchestration, and an integration platform for the software system [2].

The final prototype for ODIN Cybersecurity solution provides cybersecurity services for the ODIN
Pilot Cases. The ODIN Cybersecurity solution features both a targeted threat modelling and an
effective cybersecurity toolkit for incident detection and response based on paradigms such as the
MaGMa and MITRE ATT&CK.

ODIN 101017141

2. OPENFLOW
2.1. Introduction

This section presents the final prototype OpenFlow module which is one of the two modules of the
ODIN Networked component. The final prototype of the OpenFlow module is the newest and final
version of the OpenFlow module, whose initial prototype has been presented in the ODIN deliverable
D4.1 “ODIN Networked Component initial prototype”. The development of the final prototype
OpenFlow module follows the OpenFlow Architecture and specifications of the ODIN Architecture
specifications of D1.4.

OpenFlow architecture offers centralized coordination, orchestration, and an integration platform for
the software system [2]. OpenFlow interoperates with and manages other ODIN modules. The latest
version of the OpenFlow functionalities are presented in section 2.3. These features have been
presented in D1.4, were implemented through the development phase of WP4 and were also targeted
by the initial OpenFlow prototype. Table 1 summarizes key OpenFlow features and provides an
overview of the different feature status in the OpenFlow initial prototype and the final prototype of the
OpenFlow module.

Table 1: OpenFlow features status

OpenFlow

Initial OpenFlow

Final OpenFlow Prototype

Features

Orchestrate Modules
and Resources

Prototype
Initial prototype

Completed.

Emulation Only Actions Completed. Includes Actions,
services and events.
Simulation Initial prototype supporting | Completed and validated with

validation scenarios

ODIN Digital Twin.

React on Shopfloor
Events

Initial prototype supporting
validation scenarios

Completed and validated in
Whitegoods and Automotive Pilots

React on Safety
Events

Initial prototype supporting
validation scenarios

Completed and validated in
Whitegoods and Automotive Pilots

React on Security
Events

Initial prototype supporting
validation scenarios

Completed and validated in
Whitegoods and Automotive Pilots

Control & Monitor
Task and Action
Execution Flow

Initial prototype supporting
validation scenarios

Final prototype that can support
industrial scale scenarios

Monitor Networked
Software Modules
Status

Initial prototype supporting
validation scenarios

Final prototype that can support
industrial scale scenarios,
visualization using interactive
diagrams with motion

Control OpenFlow
Execution Flow

Initial prototype supporting
validation scenarios

Final prototype that can support
full scale scenarios

Request Replanning

Only in emulation

Can work in emulation, simulation
and execution.

Validate Open

Partial, targeting initial

Final prototype that can support

Repository

Schedules prototype industrial scale scenarios
OpenFlow Supports Initial Prototype Completed, supports all
Knowledge Functionalities functionalities

ODIN 101017141

OpenFlow Initial OpenFlow Final OpenElow Prototvpe
Features Prototype Cial _DENT O T LOLOLVIE
Information Initial Prototype Connection | Included and validated, supports
Exchange with ERP | Established production plan orders and mobile
systems resources’ location tracking. ERP
emulation.
User Interface Supports Initial Prototype Completed, supports all
Functionalities functionalities

2.2. Final Prototype

The final prototype of the OpenFlow module, aims to streamline the Human Robot collaborative
software system integration. Being modular, responsive, scalable, flexible and extensible allows the
system to be quickly deployed in different manufacturing environments. The OpenFlow module can
work with any size of manufacturing system and can also be extended with appropriate new
functionalities when needed. Task planning, perception, actuation, AR application and robot control
modules integration with OpenFlow makes the OpenFlow architecture able to coordinate the execution
of all required tasks.

The modularity, scalability and flexibility aspects are important as the transition from mass production
to mass customization requires the design and operation of systems able to handle the increasing
product variety [1].

2.3. Functionalities Overview

The OpenFlow orchestrator main functionality is the execution of an OpenFlow production schedule,
which defines its interactions with other modules.

The OpenFlow production execution schedule models the tasks and actions that need to be executed
by the production resources to implement a production order. The production schedule also models
the system level reactions and recovery options in anticipation of disruptive events such as safety,
security or different type of failures, such as equipment or network failure.

The production schedule model is comprised of a directed graph of actions, together with meta-
information that group the actions into tasks and define how to dispatch the necessary commands for
each action.

Each action is a node in the graph and connects to other actions with directed vertices. Every vertex
has a source action, a destination action and a vertex unique name. Vertices among the same source
and the same destination actions are uniquely named.

Actions in the OpenFlow architecture model atomic, indivisible processes or operations. These actions
can represent human tasks, robot or machinery equipment operations, or computing processes. Each
action is controlled by a specific action actor.

OpenFlow supports different technologies, including the Robot Operating System (ROS), that is a set
of software libraries and tools used to build robot applications.

All active actions are executed in parallel with no assumptions regarding the relative order of the action
executions. The actor model is a concurrent computation model, that introduces actors as a primitive
of concurrent computation. In a nutshell actors exchange information only by immutable messages.

Tasks are defined as groups of actions; each task has a single first action and a single last action. When
requested, OpenFlow starts a schedule by automatically activating all the entry-point actions and stops
a schedule when the first stop (terminating) action has been reached. Once an action reaches a terminal
state the action actor sends start signals to the appropriate actions that they could start. Selecting
suitable next actions as well as the preconditions that need to be fulfilled before an action can start
after receiving a start signal depends on the configurations in the OpenFlow manufacturing schedule

ODIN 101017141

and the monitored execution status of the action. The OpenFlow orchestrator selects the proper actions
to start depending on the execution outcome of an action as well as the overall execution context.

2.3.1. Login

The OpenFlow final prototype supports multiple accounts, providing better granularity on the
management of different accounts than the initial OpenFlow prototype. The functionality is transparent
to the user, who only needs to enter the login credentials in the Login Page.

. o\
A % i m Username
\ . Ja

Password

Figure 1: OpenFlow Ul: Login Page

Login Page offers a user-friendly, simple login functionality to OpenFlow Ul. OpenFlow provides role
management. Each user has access only to the information of the company related company. After the
login, the user is redirected to the landing page.

2.3.2. Schedules View

:I [Product Plans [Resources (D Statistics /) Detected Issues

S ERP Connection {5} Settings

Show 25 entries Search:
N Tasks Actions Product
Name Datecreated ' Execution Resources Schema Schema Events Plan
1 WhiteGoods M36 2023-12-6, | e } [— ‘ View View | — 1 WhiteGoods
Schedule 134621 = — M36
2 Helle World - Projecter 2023-12-6, | Select ‘ [View | ‘ View View I View J Hello World
Schedule 1346:12 - Projector
3 White Goods - Security 2023-12-6, Select ‘ View | View View | | View ‘ White
Validation Schedule 13:46:18 — — Goods -
Security
Validation
4 whiteGoods M8 2023-12-6, | Select J { View | ‘ View [| View ‘ WhiteGoods
Schedule 1346:58 M1a
5 WhiteGoods Simulation 2023-12-6, Select View | View view | | View | WhiteGoods
Validation Schedule 13:46:16 — R —— Simulation
Validation
Showing 1 to 5 of 5 entries Previous | 1 | Next

Figure 2: OpenFlow Ul: Schedules Overview

ODIN 101017141

The Schedules Overview screen of the OpenFlow final prototype software module displays useful
information to users, providing a high level of overview as well as detailed information. The Schedules
Overview screen offers access to visual representations of the required Resources of each Product Plan
and information about these Resources, Schedule’s Tasks and Actions as well as the core functionality
to select a Schedule for execution by clicking the related “Select” button in the Execution column as
shown in Figure 2.

OpenFlow allows the user to see different information for each schedule through a set of different
action buttons. In particular, the OpenFlow provides the following action buttons for each schedule.

e Schedule Execution.
o When this button is pressed, the OpenFlow sends the selected schedule in the Execution
Status View, that is presented in section 2.3.3.
e View Resources.
o This button shows information about the resources that are used in the particular schedule.
e View Tasks Level Schedule Diagram.

o This button shows a task level diagram for the particular schedule using the task level
schedule visualization functionality of OpenFlow. An example task level schedule
visualization for the White goods pilot case can be seen in Figure 3.

14 ,

Collaborative Mode Monitoring \ MNest !
)
A

- /

/
-

Gesture control request handler Z__:? gestureCDm@i_g’:l_EEE gestureControlEnabled

Mex t

¥
Toolchange (No Tool to Magnetic) :‘;‘—‘ OnResums~ noSafety\.fFalo_M_;T'@ safetyViolationActive

Mest MNex t

A
Pick transformer from kitting table i_"-‘ O_EE_L_@E} OperationalException

Mex t

Y
Place trans former on the self ; _ - OnResume

v 5
*,
N,

M,
Next \Next
/ A
/ !
/ Pick big cooktop from kitting table i:_; %@Lﬁ@“} OperationalException
v ¥

_ Install transformer in the oven ‘: " OnResume MNext
W
A\
N,

'\.\Next Provide big cooktop to the operator. ; "~ OnResume
A - .
_\ /’/ \\\

\ Next

AY //’/ \\

N \
Install big cooktop on the cooktop burner ‘:__: OnResume .|Next
./"/‘ - T
~ A~ —
-~ Next e —
- .
// 7 ™

/ (< N\
. Pick medium cooktops from the kitting table. ‘é_‘_ - OH_REELE‘EE'Z‘- OperationalException

/
/ |

Figure 3: Task Level Schedule Diagram - White Goods Pilot Case

ODIN 101017141

o View Actions Level Schedule Diagram

This button shows an actions level diagram for the particular schedule using the action level schedule
visualization functionality of OpenFlow. An example action level schedule visualization for the White
goods pilot case can be seen in Figure 4.

S Mot To Cperatos Raeull Fublished Evunt S For claty olaton gt
S i, A 13 TS A £ 0 untenc zzz-av0 aToL

ot eopresncion

i st

wa T et resaaprametra | T B
e kg e e ook Tesk b Tk (a1 o T Tatt e Toourangs vasare s b Tost st e Tockoran (veceum s e sl

re—

Figure 4: Actions Level Schedule Diagram — White Goods Pilot Case
o View Events

The OpenFlow Schedules view can show all supported events for each schedule. During the execution
of a production schedule the OpenFlow can monitor and log the triggering of these events in dedicated
event logs. The OpenFlow can show the events for a specific schedule after clicking the Events button
on each schedule. Information for each event such as Name, Event Type and the predefined schedule
execution actions that handle the event tracking in real-time can also be shown. A screenshot of the
events view is available below.

Events for Schedule *
Show 25 v entries Search:
* Name Event Type Used In Action
© Safety Event RosTopicEvent

‘ Handle Safety Events ‘

© Detection correction human Task RosTopicEvent

‘ Execute Human Task Result Published Event ‘
result event handler

© Release Gripper Request Event RosTopicEvent ‘ Release Gripper Request Event ‘
© Safety Status Event RosTopicEvent ‘ Handle Unsafe Status Events ‘
‘ Handle Safe Status Events
(+) Cyber Security Event RosTopicEvent ‘ Handle Security Events
© Safety Mode Event RosTopicEvent ‘ Handle Safety Mode to Reduced Events |
‘ Handle Safety Mode to Normal Events |
© Gesture control request event RosTopicEvent

Gesture Control Request Event ‘
handler action id 4

Showing 1 to 7 of 7 entries Previous 1 Next

Figure 5: Schedule — Events Overview

ODIN 101017141

The OpenFlow can provide more detailed information for each event depending on the Event Type.
For instance, the user can expand events implemented as ROS Topics to see their definition. More
specifically, the OpenFlow can show to the user the exact ROS definition file, the event ID, the
message type, the Graph Name used in the current ROS network and the ROS MD5 as shown in Figure
6. This figure shows information about the safety related events. The information presented in this
view is useful to support integration testing and onboarding, as it allows quick comparisons between
interface definitions. When one of the displayed events occurs, it is being logged in Execution Status
view which will be described in section 2.3.3.

Show|25 v/ entries Search:
4 Name Event Type Used In Action
(-} Safety Event RosTopicEvent

Handle Safety Events

ID: beflObcl-ceQc-4770-9bc4-39afBeedchaf
Message: integration/SafetyEvent
Graph Name: emulation/safety/integration/topics/safety_event

ROS Definition: ##Represents a safety related event

##identifier of the event
std_msgs/String event_id

##When the event took place
std_msgs/String timestamp

##identifies the source of the safety event
std_msgs/String source

##Additional information depending on the source
std_msgs/String description

ROS MD5: ff009872hbf2b8298ceteeafdecIbb52f

Figure 6: Schedule — Detailed Events view

2.3.3. Execution Status View

The OpenFlow Ul Execution Status screen provides information about a running schedule and offers
control options to the user, effectively allowing the user to control the production execution. The
Execution Status View becomes visible, when schedule is selected. The user can select any schedule
visible in the schedules view, (section 2.3.2) for execution and this will open the schedule in the
Execution Status View. The OpenFlow schedule Execution View is shown in Figure 7.

ODIN 101017141

@ Statistics /) Detected Issues whemeauser

Sign out

Schedule Reschedule '
Name Product Plan Date Created Status

; 7 Refresh &
WhiteGoods WhiteGoods 2023-12-21, =D S o S
M36 M36 21:02:05 -

Schedule 631

:= Actions Execution & Events Log %o Tasksl_ %o Tsi‘g
. Reo Actior

Show 10 v entries Search:
Task 4 Resource Status ¢
@ Collaborative Mode Monitoring Operator
V [finshed]
® Gesture control request handler . ur10-Cobot I
’ X [finshed]
@ Install big cooktop on the cooktop burner Operator —
@ Install knob on the cooktop burner @ Operator
i
@ Install medium cooktop on the cooktop burner @ Operator
@ Install small cooktop on the cooktop burner Operator RIS
i f
@ Install transformer in the oven Operator e
@ Pick big cooktop from kitting table \ ur10-Cobot I
® Pick blister from the kitting table. \ ur10-Cobot I
@ Pick cardboard from the kitting table. ur10-Cobot
Showing 1 to 10 of 32 entries Previous 1 2 3 4 Next

Figure 7: Open Flow Ul: Execution Status View - Whitegoods Pilot Case

The OpenFlow Ul Execution Status View enables the control of a Schedule and offers visualization of
the execution in Task level or in the Action level which is more detailed.

Production Schedule Execution Control

The final prototype of the OpenFlow software module enables the control of the execution at a system
level. In particular the OpenFlow final prototype can start, pause, cancel and resume the execution.

The Start button starts the execution of the selected Schedule and enables the Pause-Resume & Cancel
buttons and thus the related functionality.

While the Schedule is running, the OpenFlow allows the user to pause the current execution and
resume it later on demand.

Figure 8: Options while Schedule is running

ODIN 101017141

After clicking on the Pause button, the Pause button is replaced by a Resume button when the Schedule
has been paused as shown in Figure 8. The Cancel Button cancels the Tasks & Actions that are active.
The Ul Controls are then updated to only allow the user to Start the Schedule from the first Task again.

e ® coci®)

Figure 9: Options while Schedule is paused

The final prototype of the OpenFlow module makes a clear distinction between the cancelling and
pausing a running schedule. In particular, during the pausing functionality, the OpenFlow will make
sure that the system will pause at the next stable, resumable opportunity, this may require some more
time to complete, as the system will seek the next optimal point to pause. However, after pausing a
schedule the OpenFlow final prototype can resume the operations seamlessly. On the other hand, the
cancel button will invoke the cancelation functionality. The cancelation will try to stop the schedule
as soon as possible, without considering the possibility to resume . In both cases, that is when the
Schedule is paused or stopped, the OpenFlow final prototype allows the user to reschedule the
remaining Tasks as a new Schedule ready for execution through the Reschedule button in Figure 7.

Schedule Status Visualization functionality

The OpenFlow user interface provides real time monitoring on the status of Tasks & Actions as well
as visualizing the Schedule in two different graph version, an animated interactive graph and a static
graph. This information is shown in the Schedule Status View.

The status is shown in real-time in both the Task and Action level in the table (Figure 7).

To dispatch real-time status information for Tasks and Actions, OpenFlow utilizes a specific
WebSocket server that offers bidirectional connection and supports multiple simultaneous connections
so that external or internal software modules can receive the same update on each status dispatched.
Clients receiving status updates from OpenFlow using this WebSocket connection include the
OpenFlow Ul — Execution Status view and Interactive live graphs which will be presented below.
Figure 10, presents the information stream described above between OpenFlow and Ul features.

OpenFlow WebSocket Servers

/ OpenFlow Core Engine \

Schedule Action
Crchestration Orchestration
WebSocket WebSocket
Status Evenis

Senver Server

A
L

"
W
¥

-

- i

'

e

OpenFlow Graphin
User Interface Interactive
Diagrams
~ J

Figure 10: OpenFlow WebSocket information stream

ODIN 101017141

o Task Execution Status

X e rem o 1, . e 1,
show 78 | emren ewsch
Task * Assaure .
@ Fie s ey shens o Eig e '-.; ¥ Ik
@ o :||'_-_; Crramas
£ woewer o T N e
@ Tackchorge fho T b Flecctle) :‘ R
Eij u wik :‘ i
@ Taich = Toc =‘ .
@ Tz ; r
Eﬁ o= A overesr -
@ Gestrr \; 32k
@ = @ Cverukr
Showr 21 X ol 33 e P 33 4

Figure 11: Tasks Execution Status — White Goods Pilot Case

While the Schedule is running, the status of the Tasks is constantly updated to show the actual
execution status. The Tasks consist of many actions and offer a higher level of abstraction and
observation. The screenshot in Figure 11 shows tasks in different status at the same screen.

) Tasks Exeoution Yo Actons Live Grapll| R, Actons Grapll R, Tasks Lve Graph| ., Tosks Grephl
aaaaaa
Task + Action Resource Status
@ Collaborative Mode Monitoring @ Handle Safety Mode to Reduced Events @ Operator
@ Collaborative Mode Monitoring @ Handia Safety Mode to Normal Evonts @ Operator
-
@ Gesture control raquest handier @ Gestura Control Request Event " urto-cobot
@ Safety Mori @ Handle Unsae Status Events @ Operator
() sty Wonirg (@) Horas Satsy Everts @ Operalor
@ Security Manitoring @ Handle Sec s @ Opsrator
S - [—— = ioca
@ Collaborative Mode Monitoring @ Entoring Collaborative Area Notification @ Operator
@ Callaborative Mode Menitoring (&) Esiting Colaboraive Ares Notfcaton @ Operator
.
@ Gesture control request handier (&) ‘Switch based on Gesture Control saius T, ui0-Cobot
Shoudng 1to 10 of 140 entics wioss | 1|2 3 a4 s 1 Nex

Figure 12: Actions Execution Status — White Goods Pilot Case
o Action Execution Status

Similar to the Task Execution Status, the Actions Execution tab panel displays actions names, their
resources and Task and their status as shown in Figure 12. The Actions are atomic execution steps that
are part of a higher-level Task abstraction.

o Action & Task Information

By clicking on each Action, the user can access a specific view presenting information data for the
action clicked. Such data include the 1D, the network resource utilized by this action, the task that it
belongs too, if it can be repeated as well as the ID of next actions in the current selected . Additionally,
Open Live Graph button opens the Actions Interactive Graph and zooms into the position of this action
in the graph. Action Live Graph is presented below in this section.

ODIN 101017141

({g} Action: Move to quality inspection position Open L.m- x
4 ActionId ActionLibServer Used in Task Reentrant State Next Actions
4bab973b-06a7-467d- comauMobileMoveArmJointActionLibServerld = Quality Check All Can be Repeated: fal5hfc8-9825-4ad3-
9906-b1d8e5e05hda false b678-88cc173c2836
C)

Reset on Repeat:
false

ROS Definition:
##Description: Moves robot arm to a specified sequence of poses.

#goal definition

#For the moment only the JointTrajectory.joint_names and JointTrajectory.JointTrajectoryPoint.positions will be used.
#At the same time only one single frame is expected in the JointTrajectory.JointTrajectoryPoint array.
trajectory_msgs/JointTrajectory trajectory

integration/ActionRequest action_request

#result definition
uint32 goal_index # final index of JointTrajectoryPoint[] in trajectory->points array tracked
integration/ActionResult action_result

#feedback
uint32 goal_index # current index of JointTrajectoryPoint]] in trajectory->points array tracked
integration/ActionFeedback action_feedback

Figure 13: Action Information

@ Task: Collaborative Mode Monitoring Open Graph- x
Task Id * Description First Action Last Action Total Actions
4b87841f-521b-4173-9e61- Task responsible to monitor ~ 17c7ae23-3c94-488b- 17c7ae23-3c94-488b- 5
e4739f601caa collaborative mode changes = 8c02-57fcadc293dd 8c02-57fcadc293dd

Figure 14: Task information

Similarly, clicking a Task opens a view to review Task information such as its ID, description, first
and last actions as well as the total number of actions included in the Task as shown in Figure 14.

) Tasks Execurio Actions Execution g‘,am-u- gom-- hu-u- l;.r..n--
Search:
D i Name Type Handiing Action Time
1747 164-e0c-48b2-Beb-deT2cibdch2ad VisardScrewl1 ImmutableReferenceldUpdateEvent Event racking the corection of 2023620, 112624
VisardScrewl 1
1d8961e0-2bce-4005-aa20-4769611f7c26 VisardScrewl2 ImmutableReferenceldUpdateEvent Event tracking the comrection of: 2023-9-20, 11:26:24
VisardScrew 2
Showing 110 2 of 2 entries evious | 1| Next
Fiers Active - 0 Collapse Al Show A

Visarascrev. 1 -

Visardscren.2 1

Handiing Acton h
Event iracking the cormection of: VisamScrent 1 1

Event tracking the correction of: VisardScrewl 2 1

Figure 15: Event Logs

ODIN 101017141

o Event Logs

The Event Logs View displays captured events during the execution of a specific schedule. The events
are dispatched from the OpenFlow to the User Interface through a specific WebSocket for each running
schedule, making it possible for external interfaces to subscribe and get updates from captured events.
OpenFlow displays information about all logged events such as their name, type, logged time, and
related invoked action. Additionally, filter tables offering selection to display only events of specific
name or per handling actions in case of scenarios and production procedures in which many events are
being logged. Figure 15 above presents the aforementioned functionalities through the Events Log
button in the Execution Status view.

o Actions & Tasks diagrams

The OpenFlow Ul can graphically depict the Execution Schedule in either Action or Task level
granularity. Actions Graph and Tasks Graph option in Execution Status View offers visualization of
the sequence of required actions and tasks respectively in order to execute a complete Schedule. A
new diagram is generated for each case and a new page will load displaying the respective graph.
Figure 16 shows the task diagram of the preliminary White Goods pilot case. Due to the size of the
diagram a zoomed in part has been added.

;—__::.:smwlu Start
sTorren; 1 Status : STOPPED
- A

STOPPED : 1

[T

Next

Y

Get Parallel Gripper

Status : STOPPED T
F » OnResume

co kot v 2 - e A
orren STOPPED : 13
,:..mn: L e Next
| Y
;:_‘.:,.‘.":ra‘;.‘é"”" [o Pick Knob from area 1
sromen: 18 Status : STOPPED T~
A _ OnResume

STOFPED : 7

MNext

Y
Place Knob to area 2
Status : STOPPED =~
f\ s OnResume

STOPPED : 7

Next

Y
Leave Parallel Gripper

Status : STOPPED I
A v OnResume

STOPPED : 8

Next

Y
Get Magnetic Gripper
Status : STOPPED I
i _ OnResume

STOPPED : 10

Figure 16: Tasks Level Schedule Visualization diagram — Whitegoods Pilot Case

ODIN 101017141

o Actions & Tasks Interactive Graphs

Execution Status View offers access to interactive Graphs for the Tasks and Actions through Tasks
Live Graph and Actions Live Graph buttons. Graphs are loaded to a new browser window, offering
an independent standalone view into the structure and the order of the scheduled Tasks and their
Actions. Graphs use the same WebSocket utilized be OpenFlow to dispatch the status of the running
schedule and inform the User Interface about the current, completed and pending Tasks and Actions
accordingly. Tasks Live Graph also displays the completion percent of each Task taking into account
the comprised actions as shown in Figure 17. The Actions Live Graph displays the completion percent
of each running Action as well as the Task list that is being updated when a Task is completed on the
sidebar as shown in Figure 18.

') start

1 : actions Status: 100.00%

‘P
£7) Safety Monitoring
17 : Actions Status: 100.00%

31"-"'4 -

[7) Collaborative Mode Monitoring
5 : Actions Status: 100.00%

JXaN

[0 Security Monitoring
6 : Actions Status: 100.00%

2
Ve
(h »

. A
@ Gesture control request handler
9 ; Actions Status: 100.00%

‘P
@ Toolchange (No Tool to Magnetic)
B : Actions Status: 100.00%

=

x
x

v :
[Pick transformer from kitting table
2 : Actions Status: 100.00%

AN

Figure 17: Tasks Live Graph

ODIN 101017141

Start @ Start Schedule

Task: Start Stats: 0.00%

Security Monitoring

£
Stop
(&) Security Monitoring SyncAny
Task: Security Monitoring Staws: 0.00%
£
S
(&) Handle Security Events - Severity Ivl > 0
Task: Security Monitoring Status 0.00%
et Neys

(&) Handle Security Events - Severity Ivl > 11 (&) Security Event 1 Notification

Task: Security Monitoring Status: 0.00% Task: Security Monitoring Status: 0.00%
et Moy
(&) Handle Security Events - Severity vl > 21 (@) Security Event 2 Notification

Task: Security Monitoring Status. 0.00% Task: Security Monitoring Status 0.00%

(@) Security Event 3 Notification
Task: Security Monitoring Status: 0.00%

Figure 18: Actions Live Graph

Additionally, by hovering the mouse on each Task or Action displayed on the Graph, the User can see
information about each Task or Action, such as ID, First Action and Last Action (Tasks Live Graph)
as shown in Figure 19 and Figure 20 respectively.

(& Switch based on equipped gripper
Task: Safety Monitoring

i
fth'\pPe‘Equmpe
sa

pext

(@ Set Object Area

Action ID: c11e839e-2e7c-4137-8f37-6622424e3160 O

® @

@ Enabling knob alternative actions
Task: Safety Monitoring Status: 0.00%

Figure 19: Actions Live Graph (action information)

ODIN 101017141

) Start
1 : Actions Status: 100.00%

=

m

=
@ Safety Monitoring
17 : Actions Status: 100.00%

Yo e
@ Collaborative Mode Monitoring }

Name Collaborative Mode Monitoring

XN

Taskid: 4ph87841f-521b-4173-9e6f-e4739f601caa L

First Actionld: 17c7ae23-3c94-488b-8c02-57fcadc293dd O

Y
-
L)
B Last Actionid: 17c7ae23-3c94-488b-8c02-57fcadc293dd O

/

i

@ Gesture control request handler
9 : Actions Status: 100.00%

I
Figure 20: Tasks Live Graph (task information)

2.3.4. Product Plans Overview

The OpenFlow final prototype models the production information of products in a generic Product
Plan description model. This model contains information that allows scheduling, rescheduling and
seamless communication with the Al Task Planner. The OpenFlow provides the required functionality
that allows users to view and inspect key information from the Product Plans as well as to request from
the Al Task Planner a new schedule. The OpenFlow Product Plan screen displays only the Product
Plans that the logged in User has the rights to view. Figure 21 is a screenshot of the Product Plan view,
that shows the available product plans for the Automotive pilot case. Each Product Plan can be used
to generate a Schedule through the Plan New Schedule option.

ODIN 101017141

-’V- Schedules E Cb Resources stellantisuser

(D statistics /\ Detected Issues =] ERP Connection {é} Settings Sign out

Show ‘25—"‘ entries Search:| |
4 Name Plan New Schedule
1 Automotive M36
2 Automotive M36 Operation 1 e i e

‘ Plan New Schedule |

3 Automotive M36 Operation 2 Plan New Schedule

4 Automotive M36 Operation 3 ‘IW|

Showing 1 to 4 of 4 entries Previous ‘ 1 ‘ Next

Figure 21: Open Flow Ul: Product Plans View (Automotive Pilot Case)

The “Plan New Schedule” button of the Product Plan’s OpenFlow user interface, shown in Figure 21
will send all required information to the Al Task Planner and receive the planning information,
subsequently the OpenFlow will convert this information to an OpenFlow Production Schedule that

can be executed and monitored through the OpenFlow final Prototype Module through the Execution
Status View that is presented in section 2.3.3.

2.3.5. Resources View

The OpenFlow resources view displays all available resources to the company the User belongs to
with a specific icon for easier recognition, which can be assigned as resources in Tasks and Actions of
Schedules. Figure 22 shows the Resources of White Goods pilot case.

] Execution Status 4\ Schedules @ Product Plans e Statistics whemeauser

/ Detected Issues = ERP Connection {é} Settings

Sign out

£ Digital Description - (D Digital Description -
Resources Standards

Show 25 v entries Search:

D 4 Name Modules Events
1 @ Operator View | View |
2 £ Projector Interface View View
[\
3 K ur10-Cobot View | View |
Showing 1 to 3 of 3 entries Previous 1 Next

Figure 22: Open Flow Ul: Resources View

ODIN 101017141

Additionally, Modules column on each resource displays the available Network Resources that can be
utilized from this resource in a Schedule. Figure 23 shows the available ActionLib Servers of url0-
Cobot for White Goods use case. OpenFlow Ul also supports each network resource to have a specific
assigned icon, though in this case for simplicity all ActionLib Servers have the same icon.

Sub-modules of this resource ®

Show |25 v |entries Search:

4 Name Graph Name

(+) ¢ gripperControlGripperActionLibServerid emulation/gripper/integration/node/control_gripper

(+) @ urlOMoveArmJointActionLibServerld emulation/ur/integration/node/move_arm_joint
(+) &7 toolChangerControlTaolChangerActionLibServerld emulation/tool_changer/integration/node/control_toolchanger
(+) &7 url0ConfigureTepActionLibServerld emulation/configure_tcp/integration/node/referenced_execution
Q &7 urlOMoveArmCartesianActionLibServerld emulation/ur/integration/node/move_arm_cartesian
(+) &7 detectObjectActionLibServerld emulation/environment_perception/integration/node/detect_object_process
(+) &7 controlScheduleExecutionActionLibServerld emulation/open_flow/integration/node/control_schedule_execution
(+) &7 url0ConfigurePayloadActionLibServerld emulation/configure_payload/integration/node/configure_payload
Showing 1 to 8 of 8 entries Previous 1 Next

Figure 23: Open Flow UI: Resource’s modules

Furthermore, in modules information window the User has the option to expand a specific network
resource and gain access to additional information such as the ROS Definition and ROS MD5 hash for
the ROS files being utilized for each Action, Service or Message as shown in Figure 24. This feature
can be used from project partners through development procedures to verify the commonality of shared
ROS definition files in both OpenFlow and external network modules.

(-) 7 urlOMoveArmJointActionLibServerld emulation/ur/integration/node/move_arm_joint

ROS Definition: ##Description: Moves robot arm to a specified sequence of poses.

#goal definition

#For the moment only the JointTrajectory.joint_names and JointTrajectory.JointTrajectoryPoint.positions will be used.
#At the same time anly one single frame is expected in the JointTrajectory.JointTrajectoryPoint array.
trajectory_msgs/JointTrajectory trajectory

integration/ActionRequest action_request

#result definition
uint32 goal_index # final index of JointTrajectoryPoint[] in trajectory->points array tracked
integration/ActionResult action_result

#feedback
uint32 goal_index # current index of JointTrajectoryPoint[] in trajectory->points array tracked
integration/ActionFeedback action_feedback

ROS MD5: 83d331d3ba87ed49c2c94c4f4c47e351

Figure 24: Network Resource Information

ODIN 101017141

2.3.6. Statistics View

() Execution Status /- Schedules [Product Plans [} Resources whemeauser

([Detected Issues 3 ERP Connection {g} Settings

Product Plan Duration = 5 SIS 3
Schedule Name = Start Time Finish Time Status
Name (hh:mm:ss:ms)
= WhiteGoods M36 WhiteGoods 415:05:00 2022-12-25, 2022-12-25, .
Schedule M36 U 19:36:26 - 000 19:47:46 - 000 FINISHED
V' Tasks
Duration 5 oz A
Task Name Start Time Finish Time Status ¥
(hh:mm:ss:ms)
@ s ity Monitor 0:00:00:020 2022-12-25, 2022-12-25, .
I nitorin :00:00:
i Montanng 19:36:26 - 000 19:36:46 - 000 FINISHED
Toolchange (No Tool to 2022-12-25, 2022-12-25, .
0:00:00:020
Vacuum) 19:36:46 - 000 19:37:06 - 000 FINISHED
Place cardboard on the 2022-12-25, 2022-12-25, .
0:00:00:020
cardboard table. 19:37:06 - 000 19:37:26 - 000 FINISHED
2022-12-25, 2022-12-25,]
Stop 0:00:00:020
19:46:46 - 000 19:47:06 - 000 FINISHED
Place transformer on the 2022-12-25, 2022-12-25, .
0:00:00:020
self 19:37:26 - 000 19:37:46 - 000 FINISHED
2022-12-25, 2022-12-25, .
Start 0:00:00:020
19:46:26 - 000 19:46:46 - 000 FINISHED
Provide small cooktop to 2022-12-25, 2022-12-25, .
0:00:00:020
the operator 19:37:46 - 000 19:38:06 - 000 FINISHED
Pick big cooktop from 2022-12-25, 2022-12-25, .
S 0:00:00:020
kitting table 19:38:06 - 000 19:38:26 - 000 FINISHED
Provide medium 2022-12-25, 2022-12-25, .
0:00:00:020
cooktop to the operator. 19:38:26 - 000 19:38:46 - 000 FINISHED
Toolchange (Vacuum to 2022-12-25, 2022-12-25, .
0:00:00:020
No Tool) 19:38:46 - 000 19:39:06 - 000 FINISHED
1 2 4 >

Schedule Statistics

Sign out

Figure 25: Schedule Statistics

The Statistics View features a metrics collection engine utilized by OpenFlow to present to the User
runtime data collected during the execution of a production schedule. Such data include the start time,
finish time, duration and status for each Task and Action in separate sections, as well as for the entire
production schedule as shown in Figure 25. This provides a useful insight on whether a schedule has
been completed successfully or in case of an error which tasks or actions have been completed and
which ones were still idle at the time the error occurred.

ODIN 101017141

Schedule Aggregate Statistics

Schedule Name Product Plan Name
WhiteGoods M36 Schedule WhiteGoods M36
Statisti Average Duration Minimum Duration Maximum Duration Status
atistics

(hh:mm:ss:ms) (hh:mm:ss:ms) (hh:mm:ss:ms) Frequencies
Tasks

0:00:00:00 0:00:00:00 0:00:00:020 FINISHED: 32
Aggregates
Actions

0:00:00:00 0:00:00:00 0:00:00:01 FINISHED: 301
Aggregates

)

Figure 26: Schedule Aggregate Statistics

Additionally, on the same user interface the User has the option to review aggregate statistics data
calculated from data captured during execution time, which include average, minimum, maximum
duration times of Tasks, Actions alongside the total outcome of each Status states with quantities for
each one (e.g., how many Tasks in total are finished, idle, active).

2.3.7. Detected Issues View

Detected Issues

Product Plan User D Realm Manual Report Report Time

wheeGoodsmes usend

> ROS ActionlibServers

Figure 27: Detected Issues View

Detected Issues present the option of OpenFlow to log errors as they happen during execution and
present them alongside system information during the runtime. Captured data include the schedule and
product plan that was running when an error happened, the logged error message and captured
timestamp as well as ROS environment settings as presented in Figure 27.

Additionally, through expanding the relevant sections in the same View, User can review the ROS
network resources that were loaded during the execution when the error happened as presented in
Figure 28 and Figure 29 for ROS Topics and ROS ActionLib servers respectively.

ODIN

101017141

Error Message

= Show Error

> ROS Settings

Error in Schedule

WhiteGoods M24 Schedule

v ROS Topics
Path
faurali |_arm_mode/cancel O
‘emulatior ior ontrol_arm_modk a
_arm_f
J fi _arm delresult J
arm| a
fi fi | ¢ feancel OJ
emulatior ion/actions/control_gri k3
_gripp a
tauralfi ¥ result G
¢ a
Ji fi _arm_cartesian/cancel (0
‘emulatior ior :_arm_cartesiar a

:_arm_cartesian/goal O

_arm_cartesian/result O

:_arm_cartesian/status O

> ROS ActionLibServers

Detected Issues

Product Plan

WhiteGoods M24

Figure 28: Detected Issues - ROS Topics

Ervor in Schedule

Error Message

ROS Setfings

ROS Topics

v ROS AsiicaLibServers

&5 contol Gesire

5 Move Cartesian @

&7 Contral Gripper Changer O

Show Noliication (o Ogeralor (1

& Control Taol Changer ()

S move Joints

£ configwe TP O

& Execute Human Task J

Conligure Payload

WhitsGoods 24 Schedule

Detected Issues

Praduct Plan User 1D Reaim

Notle Graph Name

emulationioperaior_supporfimegreionnadefgesiure_conmel J

emusboniefieaiennodemove_am_cartesian 3

emulaionyrpperivegraonnodeiconal_ripper O

ermuistioniaperator_supperlintegraion/nodelshow_natification (1

emulafionfiool_changerfinisgratininodelcantrol_toolchanger

emulaanturintegrationinadelmave_arm, jint (J

emulationicanfiqurs_teplnegrationnode referenced_sxeeuion O

emuiationoperaIr_supgorTintegratoninodelexecute_human task 0

emulationisonligure_payloa ntegrationinode/con figure_paylord O

ihiteGoads M22 useria ‘emulation

Manual Report

FALSE

Figure 29: Detected Issues - ROS ActionLib Servers

Report Time

Server Action Mame

ODIN 101017141

2.3.8. ERP Connection Details

() Execution Status 4 Schedules [Product Plans [Resources (D Statistics whemeauser

Detected Issues ERP Connection Settings Sign out
g: 9

Incoming Orders

Product Name Quantity Progress Status

Hello Werld - Projector] 0%

WhiteGoods M18 0 0%

WhiteGoods Simulation

0 0%
Validation
WhiteGoods M36 1 0%
White Goods - Security Validation 1] 33%

Select product from Incoming Orders

Available Product Plans

> Product Plan Description Plan New Schedule
d0c78e40-fb04-4ab1-875a- White Goods - Security White Goods - Security

Generate Schedule
03c617bbasd2 Validation Validation

Figure 30: ERP Connection

The OpenFlow can accept incoming orders from external information systems. The incoming orders
can be presented in the ERP Connection View. The OpenFlow also supports the process accepting
incoming orders from external information systems with a dedicated Ul. Figure 30, shows the table of
Incoming Orders that presents the different incoming information as they arrive from external systems
and the table of Available Product Plans that are used to fulfil the orders.

Incoming Orders

Product Name Quantity Progress Status

Hello World - Projector 0 0%

WhiteGoods M18 0 0%

WhiteGoods Simulation

0 0%
Validation
WhiteGoods M36 1 0%
White Goods - Security Validation 1 [) 33%

Figure 31: ERP Order Progress

ODIN 101017141

Additionally, the OpenFlow can track and show in the ERP View the progress of the running schedule
that are aimed to address specific received orders. This feature is implemented also using a WebSocket
to display the status of the running schedule as presented in Execution View and Live Graph.

2.3.9. Digital Resource Descriptions

The OpenFlow has been integrated with the Digital Resource Description module of the ODIN Digital
Component. The Digital Resource Description stores general description of production resources; their
categorization data; their functions (capabilities/skills) and (HW) interfaces, including technical
content; links to datasheets and other sources; images/photos; links to CAD/URDF models. The Digital
Resource Description offers functionalities such as searching, filtering, querying, accessing and
managing of Resource Description.

The final version of the OpenFlow module is integrated with the Digital Resource Description module.
In particular, the OpenFlow backend is able to consume the REST API offered by the Digital Resource
Description.

The integration has been implemented through webservices using the OpenAPI Specification for
RESTful API design and in particular using the Swagger tool. The OpenAPI Specification (OAS)
defines a standard, programming language-agnostic interface description for HTTP APIs. This allows
both humans and computers to discover and understand the capabilities of a service without requiring
access to source code, additional documentation, or inspection of network traffic. [9] Swagger is a tool
that allows the description of the structure of the APIs in machine readable formats. [10]

The integration of the OpenFlow and the Digital Resource Description module takes place in the
backend. The OpenFlow user interface server performs the required data exchange with the Digital
Resource Description and then the information is used accordingly. The following paragraphs
demonstrate how the information exchange is implemented for the Standards Digital Resources.

2.3.9.1. Resources Information

The Digital Resources Description user interface of the OpenFlow offers the user the possibility to
view the resource descriptions that are available in the Digital Resources Description module.

The information is displayed in a table format as presented in Figure 32. In addition to the displayed
information, the user can click on a link to view more information in the Digital Resource Description
user interface.

A Schedules [Product Plans (D statistics /) Detected Issues = ERP Connection whemeauser

{§} Settings Sign out

o Network Description /? Digital Description - Resources Digital Description - Standards
Show 25 v entries Search:
Id 4 Name Link
RD_Bosch_NXPPistolgripNutrunner_NXP012QD- ;({'g}}‘ https://stage.resourcedescription.rd.tuni fi
36V-B_1-4inch_1.rd s : 2 /rcp/api/vi/rds
RD_Bosch_NXPPistolgripNutrunner NXP012QD- pp gosch_NXPPistolgripNutrunner NXP012QD-

36V-B_1-dinch_1.rdxml 36V-B_1-dinch_1.rd/doc-html

RD_TEC_ReCaM-Gripper1_1_v1.rd a8 RD_TEC_ReCaM-Gripper1_1_v1.rd.xml https://stage.resourcedescription.rd.tuni.fi
& Jrep/api/v1/rds/RD_TEC_ReCaM

Gripper1_1_v1.rd/doc-html
RD_UR_UR10_collaborative_v1.rd > RD UR UR10 collaborative v1.rd.xml https://stage.resourcedescription.rd.tunifi
L /rcp/api/v1/rds/RD_UR_UR10_collaborative_v1.rd

/doc-html

Showing 1 to 3 of 3 entries Previous 1 Next

Figure 32: OpenFlow Ul - Digital Resource Description Resources Table screenshot

ODIN 101017141

The data flow for the implementation of the Digital Resources Description user interface of the
OpenFlow is visualized in Figure 33. The Digital Resource Description Module server requires
authentication in order to access the Digital Resources. The authentication is based on JWT (JSON
Web Token). JSON Web Token (JWT) is a compact, URL-safe means of representing claims to be
transferred between two parties [11].

More specifically, the OpenFlow server authenticates with the Digital Resource Description Module
server using appropriate credentials and requests Resource Description information in order to respond
to requests coming from the OpenFlow user interface. This information is displayed in the “Digital
Description — Resources” table of the OpenFlow UI. The clicking of the link redirects the user to the
Digital Resource Description Server.

OpenFlow Ul

Resources Tab
Redirect

Digital Description- Resources

Digital Description- Standards

Authentication

Resource
Description

OpenFlow
Server

Figure 33: OpenFlow Ul - Digital Resource Description Resources Functionality

2.3.9.2. Standards Information

The user interface for the display of standards within the OpenFlow framework allows users to
seamlessly view a table of standard related information housed in the Digital Resources Description
module. A user is presented with a visually intuitive table format displaying the information, as
depicted in Figure 34. In addition to the presented details, users have the added convenience of
accessing more in-depth information by clicking on the related link that redirects them to the Digital
Resource Description user interface.

A Schedules [5] Product Plans (D sStatistics /) Detected Issues &3 ERP Connection {3} Settings whemeaus
o Network Description /2 Digital Description - Resources
Show 25 v entries Search:
[11] 4 standard Id Name Description External Url Resource Description URL
1 stdISO_29262 g Production equipment for microsystems - End effector interface. hitpy//www.iso.org Open std 150_23262 Resource
fiso/catalogue_detail htm?csnumber=45372 Digital Description
Interface between grippers and handling systems
2 stdDIN_32565 Production equipment for microsystems - Production equipment for micrasystems - Interface hitpy/fwww.din.de/32565 Open std.DIN_32565 Resource
= between grippers and handling systems. Digital Description
Interface between grippers and handling systems.
3 stdISO_9409-1 @ 1S0 9409-12004 Manipulating industrial robots - Mechanical interfaces http://www.iso.org/iso/en Open std 150_3403-1 Resource
- Part 1:Plates /CatalogueDetailPage CatalogueDetail?CSNUMBER=36578& Digital Description
ICS1=2580C52=4081C53=30
4 Std EUPASS_0002 EUPASS Bay interface EUPASS - Bay interface. Connection to the framework hitp://wwiw.eupass-fp6.org
=

Figure 34: OpenFlow Ul - Digital Resource Description Standards Table screenshot

ODIN 101017141

The data flow for the implementation of the standards user interface of the OpenFlow is presented in
Figure 35. The Digital Resource Description module server does not require authentication in order to
access the standard metadata but may require authentication of the user once the he/she has been
redirected in the Digital Resource Description Ul.

The flow of information for the implementation of this functionality is as follows. The OpenFlow
requests standard related information in order to fulfill requests coming from the OpenFlow user
interface. This information is displayed in the “Digital Description — Standards” table of the OpenFlow
Ul. When the user clicks on the link, the OpenFlow Ul redirects the user to the Digital Resource
Description Server.

OpenFlow Ul
Resources Tab
Redirect
i Digital Description- Resources
Digital Description- Standards «f———
wn| €
=|.2
.. o] =
Digital =
Resources Standards = g
Description Description OpenFlow
Module
Server

Figure 35: OpenFlow Ul - Digital Resource Description Standards functionality

2.4. Technologies & Implementation

This section gives an overview of the design and implementation technologies that have been used to
implement, test and validate the system during development.

The OpenFlow software was mainly tested in a PC equipped with an i7-3770CPU @3,40GHz and
16GB of RAM, running Ubuntu 20.04.03 LTS and uses ROS1 Noetic version and Java 17.0.1 64-bit
and since September 2023 uses the latest LTS Java version, namely version 21. Information is stored,
following the repository pattern, in a MongoDB which is a No-SQL, Document-oriented, database.

The OpenFlow orchestrator is developed in Java using the AKKA framework. The AKKA framework
is an implementation of the actor model for the Java Virtual Machine (JVM). For the implementation
of the immutable messages, as well as for persistence operations the “Immutables” annotation
processors has been used to generate code for immutable object classes [3].

In order to test and validate the OpenFlow orchestrator a series of emulated, simulated and integration
validation tests have been performed. D4.4 “ODIN Networked Component validation report — final
version” provides a detailed description of the OpenFlow validation.

The integrated Al Task Planner module is also developed in Java. [4] The ROS Java library is used to
develop the ROS interfaces for both the OpenFlow Orchestrator and the Al Task Planner modules.

During tests, different equipment has been used, such as a UR10 from Universal Robots [8] or a
COMAU Aura Collaborative Robot [7]. Different approaches have been used for the motion planning

ODIN 101017141

also, for instance using the open-source move-it platform [5]. The software developed for control and
integration of the robot has been developed in C++. The same software is also responsible for exposing
the ROS [6] interfaces for controlling the gripper, the tool changing and configuring the tool center
point and the payload.

The AR glasses used are the Microsoft HoloLens 2, the related HMI software has been developed by
using the Unity development platform and in the C# programming language.

The OpenFlow has been released in incremental docker images hosted in a private docker repository.
Docker is a platform that facilitates building, sharing, and running applications using Docker images
and containers. [17] These docker images have been distributed and used by the ODIN partners for
different purposes such as integration and validation tests and demonstrations. These incremental
versions helped partners integration and validation tests and also allowed the validation of OpenFlow
in multiple scenarios.

ODIN 101017141

3. CYBERSECURITY
3.1. Introduction

As a result of the work done in task T4.2 Cybersecurity and data processing in autonomous production
environments, a private repository (https://github.com/ODIN-PROJECT-EU/odin-cybersecurity) has
been created in the private ODIN Project GitHub Organization , where the developed components
have been added, together with scripts for their easy installation and configuration. These components
are properly documented so that the end users of the module can deploy and operate them by analyzing
the cybersecurity of their environments.

The different components developed have been grouped into modules depending on the virtual
machines where they will be installed. The modules developed are the following: Monitored Endpoint,
SIEM and SOAR. The components that compose each of these modules are the ones that can be viewed
in the Figure 36 and will be detailly presented in the next sections.

Monitored endpoint

SOARserver

SIEM server

[Response |

Figure 36: ODIN cybersecurity module architecture (final version)

3.2. Monitored endpoint prototype

The component that we have called monitored endpoint is the target component where cyber security
will be analyzed. Within the project and in WP4, it is defined that the cybersecurity module developed
in T4.2 will analyze the OpenFlow component described above. For this reason, and as can be seen in
Figure 37, the monitored endpoint has been established on the machine where the OpenFlow emulator

is installed.
Monitored endpoint
@ | docker compose |

Open Flow Emulator

Data base

Figure 37: Monitored endpoint architecture (final version)

https://github.com/ODIN-PROJECT-EU/odin-cybersecurity

ODIN 101017141

3.2.1. Design

A script has been developed that installs all the necessary software on the machine and configures the
machine so that the cybersecurity of the monitored endpoint is analyzed. this script which is executed
as sudo python3 Start.py installs and configures the following components:

e SIEM agent (wazuh-agent)

o Configuration of rules for SIEM localrules and decoders and configure rsyslog
(/etc/rsyslog.conf) and suricata to report cybersecurity alert

e IDS suricata
¢ ROS environment (set up roscore)
o Expose ROS to the network

As a design assumption and due to the OpenFlow environment which is built upon docker for
demonstration purposes, the design of the monitored end point components has been built upon docker
so the following design principles are required:

o Docker and docker-compose (if they are not installed)
e Docker images for Open-Flow emulator

Finally, to connect SIEM and SOAR environment with OpenFlow and ROS, a design assumption was
made in order to communicate both software modules via alert_checker.

e Alert checker

R ROS © & Qv New subgroup m
Group ID: 48 (@

Subgroups and projects Shared projects

[l R ROS Topic alert publisher D 0
Thehive Alert Checker & Maints

R T This software checks for "; v :;—7;5:»7 7 a certain custom field 'agent-name’ in the spec L&

Figure 38: Alert checker modules

3.2.2. Functionalities Overview

This section describes the functionality of the different components that make up the Monitored
Endpoint. OpenFlow’s monitor requires the implementation of the components described in the
following subchapters:

3.2.2.1. SIEM Agent

The SIEM agent is responsible for collecting, normalizing, parsing, and later transmitting security
events and log data from various sources to SIEM server component. Host-Based IDS features are also
provided, such as: real time OS authentication errors, real time monitoring on software installation and
file monitoring among others.

3.2.2.2. IDS

The main feature of the intrusion detection system (IDS) is the ability to monitor and analyze network
or system activities for signs of malicious behavior or security policy violations. IDS play a crucial
role in cybersecurity by helping to detect and respond to potential security incidents. Key features of

ODIN 101017141

IDS implemented are: Real-time network monitoring, Anomaly Detection, Signature-Based Detection,
Alerts and Notifications and Network ID.

3.2.2.3. Alert check

The primary function of the alert_checker is to construct cybersecurity information by parsing input
from a JSON file and making this information accessible by writing it to the ROS security topic, which
is implemented by the OpenFlow.

To facilitate the functionality of this module, it is necessary to obtain in a first step the cybersecurity
incident reported in the SOAR. In order to be able to get this information, a connector
SOAR_alert_checker is designed to inspect new cases featuring a specific custom field, 'agent-name,’
within the designated SOAR client or tenant instance. It then stores each case in a .json file located in
the specified alerts folder. The software employs a tinydb file database to avoid duplicating alerts.
Configuration options can be found in the ‘config.py' file, with detailed explanations provided in the
configuration section.

3.3. SIEM prototype

The SIEM component is in charge of receiving all the alerts generated by the components installed in
the Monitored Endpoint, through the SIEM Agent. In addition to centralizing the alerts, it is
responsible for normalizing them, enriching them with additional information and displaying them in
a dashboard.

SIEM prototype creates an ecosystem that can monitor, analyze, and respond to security events within
the OpenFlow in the industrial robotics framework.

SIEM server

Figure 39: SIEM architecture (final version)

3.3.1. Design

To configure the installation environment of the SIEM component, a script has been developed. This
script, sudo python3 DockSet.py -i,in particular installs the docker-compose so that the SIEM
component can be easily deployed. In turn, the SIEM component has been packaged in docker-
compose to facilitate the installation of the SIEM component once the environment is correctly
configured.

ODIN 101017141

Finally, for the configuration of the SIEM and the inclusion of the configuration files in it, once it has
been deployed, the python3 StartServices.py -c script has been developed. This script
completes the following phases:

1. Check Docker and docker-compose installation with the tag -c to invoke the DockSet.py and
install Docker and docker-compose, if it is installed will skip it and continue.

2. Download docker images and install all needed packages for the SIEM.

3. Generate the ossec.conf, injectc into the docker wazuh-server container.

4. Stablish the rules local_rulex.xml and decoders local_decoder.xml into the docker wazuh-
server container.

5. Create the integration between SIEM+SOAR.

6. Restart all services SIEM to apply configuration.

7. Automatic connection to docker kibana server thread-core to detect when the microServices
are done and can be used.

After the execution of the script, it is possible to check where the services has been installed as
presented in the Figure 40.

Process Complete!

] 100%/100%

STATUS

Up About a minute
3 B L Up About a minute
Biem_elasticsearch_1 Up About a minute
erom@SIEM:~/GitHubRepos/odin-cybersecurity/siem$ D

Figure 40: SIEM installation and configuration

3.3.2. Functionalities Overview

This section describes the functionality of the different components that make up the SIEM component.

3.3.2.1. Decoders

The alerts generated by the Monitored Endpoint first pass through the decoders. These decoders make
it possible to normalize these alerts and index them so that they can be displayed on the SIEM
dashboard. In this case, special decoders have been developed for the attacks detected in the ODIN
project (logging errors, port scans, DoS and ROS attacks via ROSPenTo).

These decoders have been included in the local_decoder.xml file (Figure 41) so that SIEM can interpret
the specific attacks, along with those that Wazuh is able to detect with its default decoders.

ODIN 101017141

= WAZUH v ™ ement Decoders

< local_decoder.xml

~ <decoder name="json">
21 <prematch>~{\s*"</prematch>
22 </decoder>
23 - <decoder name="j
24 <parent>json
25 <regex type="
26 <order>srcip</order>

[~"]+)"</regex>
</decoder>

-~ <decoder name="json_child">
<parent>json</parent>
3 <regex type="pcre2">"dest_ip":"([~"]+)"</regex>
32 <order>srcip</order>
/decoder>

A

~ «decoder name="json_child">

36 <parent>json</parent>

37 <plugin_decoder>JSON_Decoder</plugin_decoder>
3 </decoder>

49 ~ <decoder name=" webapp”>

-<parent>

42 <prematch>

unknown user:</prematch>

</decoder>

- <decoder name=

<parent>open

<prematch>* n user:</prematch>
<regex of t="after_parent”>~\.\W+</regex>
<order>unknown_user</order>

52 </decoder>

Figure 41: ODIN custom decoders

3.3.2.2. Rules

Once the alerts are detected in the Monitored Endpoint and parsed through the decoders, they must
pass through customised rules. These rules allow us to include additional information to the alerts
(such as the Mittre 1D) by way of enrichment or other aspects (changing the rule 1D) that will allow us
to analyse these alerts appropriately. Specifically, this rule ID allows us to filter the alerts we are
interested in and send only these to the SOAR (avoiding unnecessary noise).

In the same way as the decoders, the specific rules that have been created for the ODIN project have
been put into a local_rules.xml file (Figure 42). These rules are added to the default Wazuh rules,
giving a specific analysis of the particular attacks that have been selected in ODIN.

These attacks have been selected following the modelling of MagMa MITRE that has been done at the
beginning of the execution of task T4.2. In the last year, in the integration of the pilots, it will be
analyzed whether these detected attacks are sufficient or it is necessary to create more specific rules
and decoders for other attacks that may appear in the pilot environments.

These rules are presented in the following figures, in particular Figure 42 and Figure 43.

ODIN

101017141

WAZUH \ Management Rules

local_rules.xml

1~ <group name="custom_active_response_rules,">

2

w

WOUONOWVEWNFOWONOGUV LHWNFODWONOUVEWNFOUWONOUV EWNFOWOONOGDUVAEWNFOIODWONOGW S

.

<rule id="100200" level="12">
<if_sid>86600,86601</if_sid>
<field name="event_type">~alerts</field>
<match>SURICATA STREAM SHUTDOWN RST invalid ack</match>
<description>DoS attack has been detected.</description>
<mitre>
<id>T1498¢/id>
</mitre>
</rule>

<rule id="100201" level="12">
<if_sid>86600,86601</if_sid>
<field name="event_type“">*~alerts</field>
<match>SURICATA ICMPv4 unknown code</match>
<description>Nmap scripting engine detected.</description>
<mitre>
<id>T1595¢</id>
</mitre>
</rule>

<rule id="100202" level="12">
<if_sid>86600,86601</if_sid>
<field name="event_type“”>~alerts$</field>
<match>ET INFO Python BaseHTTP ServerBanner</match>

<description>ROSPenTo scripting engine detected, Scan Analise system.</description>

<mitre>
<id>T1595¢/id>
</mitre>
</rule>

</group>

<group name="openflow_webapp_logintrror,">

<rule id="1002" level="8" overwrite="yes">
<match>Login Error</match>

<description>OpenFlow Webapp Login Error Unknown user: </description>
</rule>

</group>

<group name="openflow_webapp_unknown, ">

<rule id="100204" level="9">
<if_sid>1002</if_sid>
<match>Login Error</match>
<description>OpenFlow Webapp Login Error Unknown user: </description>
<mitre>
<id>T1100<¢/id>
</mitre>
</rule>

</group>

<group name="openflow_webapp_login,openflow_webapp_unknown_users,">

<rule id="100205" level="10">
<if_sid>100204</if_sid>
<decoded_as>openflow_webapp_login</decoded_as>
<description>OpenFlow Webapp Login Error Unknown user: $(unknown_user)</description>
<mitre>
<id>T11@0¢/id>
</mitre>

Figure 42: ODIN Security — Custom Rules 1/2

ODIN

101017141

48 - <group name="openflow_webapp_unknowmn, ">
$1- <rule id="1@8284" level="3"»

32 <if_sid»1@@2</if_sid»

12 <match>Login Errore/matchs

14 <descriptionsOpenFlow Webapp Login Error Unknown user: </descriptions
35 - <mitres

15 <id>T1lea</id>

17 </mitrex>

13 <frule»

19 <fgroup>

E]

51

32 = <group name="openflow webapp_login,openflow webapp unknown_users,"»
53~ «<rule id="1e@285" level="18"»

24 <if sid»1ee@204</if_sid>
5% <decoded_as>openflow_webapp_legin</deccded_as»

56 <description:OpenFlow Webapp Login Errcr Unknown user: ${unknown_user)</description>
57~ «mitrex

38 <id»>T1188</id>

59 </mitre»

58 <frulex»

51 «</group>

53 - <group name="syslog,sshd,">
54 - «rule id="1@@28s" lewvel="12">

55 <if_sid»s7@e</if sid»

56 <match»illegal user|invalid user</match»

57 <description>sshd: Attempt to login using a non-existent user</description»

58 - <mitres»

] <id»>T111@</id>»

78 </mitrex>

71 <group>invalid_login,authentication_failed,pci_dss 19.2.4,pci dss_18.2.5,pci_dss_19.6.1,gpgl3 7.1,gd
72 </rule>

73 «<fgroup>

<group name="ids,suricata"»
<rule id="18@287" level="12">
77 <if_sid»86608,86681</1f_sid>

78 <field name="event_ty ~alerti</field:>

79 <match>SCAN Mmap Scripting</matchs

L] <descriptionsMmap scripting engine detected. TEST</descriptions
31~ <mitres

B2 <1d>T1595</id>

33 </mitres

24 <frule»

S <fgroup>

Figure 43: ODIN Security — Custom Rules 2/2

3.3.2.3. SOAR integration

This component is responsible for collecting alerts from the SIEM and integrating them into the SOAR.
As there is no default integration between SIEM Wazuh and SOAR The Hive, this component had to
be specially designed and developed within the project. In the Figure 44 the developed two Python

scripts can be seen.

odin-cybersecurity / siem / moduleTools / ossec_siem_configs / wz2thive_stdvs /

@ IMoret5215ec Updating Integration Wazuh to the Hive

MName

[custom-w2thive

[custom-w2thivepy

Figure 44: Custom SOAR integration

)

The functionality of this module (programmed in Python) is to detect the alerts that we are interested
in for the project (those that represent that there has been an attack of those that are being monitored
in the project) through the Wazuh API, parse, format and integrate them in The Hive. This module is
also responsible for introducing additional data to the alerts (by way of enrichment) before they are

ODIN 101017141

integrated into The Hive, providing interesting data that can facilitate the operator's decision-making
process.

3.4. SOAR prototype

Once the alerts have been detected in the Monitored Endpoint and analyzed in the SIEM, they must be
integrated into the SOAR so that a cybersecurity analyst can visualize them and provide the necessary
response to resolve the incident. The following architecture (Figure 45) describes the SOAR module:

- T
| £ b

1o e

| Incident response
— SOAR

+« SOAR

+ TheHive

\ SOARsserver

| |

Figure 45: SOAR architecture (final version)

3.4.1. Design

The design of the SOAR component is equal to the SIEM based on a docker-compose environment.
The following high-level services are implemented and orchestrated with docker-compose.

Figure 46: SOAR design

ODIN 101017141

3.4.2. Functionalities Overview

The main functionality is that SOAR module is able to process alerts from the SIEM and manage a
cybersecurity automation and response lifecycle for an incident that can be modelled using MITRE
ATT&CK to detect and response.

3.4.2.1. Observables

Observables allow us to automatically extract key information from the alert that has arrived at the
SOAR in order to be able to respond to the incident.

Observables refer to artifacts or entities that are analyzed and processed to gather information during
the investigation and response to security incidents. It can be IP addresses, domain names, URLSs, file
hashes, etc.

List of observables (10f1)

Flags Type® Value/Filename &
@ other "Dec 21 15:33:02 ubuntu-s-2vcpu-4gb-120gb-intel-sfo3-01 sshd[3399808): Disconnected from invalid user sally 102(.]220[.]23[.]249 port 56860 [preauth]”

% | row json-alert
& No reports available

Figure 47: Example of observable type IP address

3.4.2.2. Responders

Responders refers to automated actions or scripts that can be executed as part of the incident
response process. Responders play a crucial role in Security Orchestration, Automation, and
Response (SOAR) by allowing security teams to automate repetitive and predefined tasks in
response to security incidents. The following responders have been deployed.

e Automated Actions

e Script Execution

e Integration with Other Tools

Please select the responder you want to run

[Fiter responde Q|

Microsoft Teams Bot_1_0
Block an IP on a host via Wazuh agent (API v4)

Wazuh Firewall Drop APIv4_1_0
Block an IP on a host via Wazuh agent (API v4)

SSH Case Sender_1_0
Sends json case info file to a remote host/folder

Cancel

Figure 48: Responders implemented

ODIN 101017141

4. CONCLUSIONS

The final prototype of the ODIN Networked Component has been completed successfully. This
document presented the final prototype, that is comprised of two modules. Namely the OpenFlow and
Cybersecurity modules have been described in this document. The ODIN Networked Component has
also been submitted to a thorough validation process, that aims to validate the suitability of the software
for the purpose of industrial usage in the framework of the industrial Pilot Cases of WP5. The
evaluation results have been reported in ODIN Deliverable D4.4, titled “Networked Component
validation report — final version”.

The OpenFlow final prototype provides all the required functionality to integrate, orchestrate and
facilitate the execution of a production schedule. Furthermore, the OpenFlow final prototype has been
thoroughly evaluated. The evaluation results have been reported in ODIN Deliverable D4.4, titled
“Networked Component validation report — final version”.

The OpenFlow final prototype offers a full suite of SOAR and SIEM services combined towards the
final ODIN Networked Component, allowing it to detect and respond to different kind of threats.

The next step for the ODIN Networked Component is to participate in the developments of WP5 and
become part of the ODIN Industrial Component. In the context of WP5, the ODIN Networked
Component modules will be responsible for orchestration and integration of the software modules of
the Pilot cases, as well as for adding cybersecurity services to the system.

ODIN

101017141

5. GLOSSARY

Al Actificial Intelligence

API Application Programming Interface

AR Augmented Reality

DB Database

DDD Domain Driven Design

ERP Enterprise Resource Planning

HRC Human Robot Collaboration

IEC International Electrotechnical Commission
IP Internet Protocol

ISA Industry Standard Architecture

HMI Human Machine Interface

HRC Human Robot Collaboration

KR Knowledge Repository

MES Manufacturing Execution Systems

OSINT Open-Source Intelligence

oT Operational Technology

PLM Product Lifecycle Management

ROS Robot Operating System

SCADA Supervisory Control and Data Acquisition
SOA Service Oriented Architecture

SOAR Security Orchestration, Automation and Response
SIEM Security Information and Event Management
SOC Security Operation Centre

ul User Interface

URL Uniform Resource Locator

IDS Intrusion Detection System

IETF Internet Engineering Task Force

JWT JSON Web Token

ODIN 101017141

- o

Hw

Sl

o

10.

11.

12.

13.

14.

15.

16.

17.
18.
19.

REFERENCES
Chryssolouris, G., Manufacturing Systems: Theory and Practice, 2nd Edition, Springer-
Verlag, New York, New York, (2006)
S. Koukas, N. Kousi, S. Aivaliotis, G. Michalos, R. Brochler, S. Makris, "ODIN
architecture enabling reconfigurable human — robot based production lines", Procedia
CIRP, Volume 107, pg 1403-1408, (2022)
Immutables, accessed online https://immutables.github.io/.
Evangelou G, Dimitropoulos N, Michalos G, Makris S. An approach for task and action
planning in human-robot collaborative cells using Al. 8th CIRP Conference on Assembly
Technologies and Systems, 2021;97:476-481.
Sucan I, Chitta S. "Movelt", available at moveit.ros.org.
ROS, “ROS - Robot Operating System”, available at www.ros.org
COMAU Aura Collaborative Robot, accessed online
https://www.comau.com/en/competencies/robotics-automation/collaborative-
robotics/aura-collaborative-robot/
Universal Robots, accessed online https://www.universal-robots.com.
The OpenAPI Specification, Github. Accessed Online: https://github.com/OAI/OpenAPI-
Specification/tree/main
What is swagger? Swagger site. Accessed Online: https://swagger.io/docs/specification/2-
0/what-is-swagger/
JSON Web Token, Internet Engineering Task Force, Accessed Online:
https://datatracker.ietf.org/doc/html/rfc7519
N. Kousi, S. Koukas, G. Michalos, S. Makris:"Scheduling of smart intra — factory material
supply operations using mobile robots”, International Journal of Production Research,
Volume 57, Issue 3, pg. 801-814, (2018)
N. Kousi, S. Koukas, G. Michalos, S. Makris, G. Chryssolouris, "Service oriented
architecture for dynamic scheduling of mobile robots for material supply”, CIRPe2016 ,
Procedia CIRP, 5th CIRP Global Web Conference-Research and Innovation for Future
Production Volume 55, pp. 18-22 (2016)
S. Papanastasiou, N. Kousi, P. Karagiannis, C. Gkournelos, A. Papavasileiou, K.
Dimoulas, K. Baris, S. Koukas, G. Michalos, S. Makris, "Towards seamless human robot
collaboration: integrating multimodal interaction”, The International Journal of Advanced
Manufacturing Technology, Volume 105, pg. 3881-3897, (2019)
G. Michalos, N. Kousi, P. Karagiannis, C. Gkournelos, K. Dimoulas, S. Koukas, P.
Mparis, A. Papavasiliou, S. Makris,"Seamless human robot collaborative assembly — An
automotive case study", Mechatronics, Volume 55, pg 194-211, (2018)
S. Makris, P. Karagiannis, S. Koukas, A. S. Matthaiakis, "Augmented reality system for
operator support in human-robot collaborative assembly”, CIRP Annals - Manufacturing
Technology, Volume 65, Issue 1, pp. 61-64 , (2016)
Official Docker site, Docker, https://www.docker.com/ accessed online 2021-09
MaGMa: https://www.betaalvereniging.nl/en/safety/magma/
MITRE ATT&CK: https://attack.mitre.org

https://www.sciencedirect.com/science/article/pii/S2212827122004498
https://immutables.github.io/
http://www.ros.org/
https://www.comau.com/en/competencies/robotics-automation/collaborative-robotics/aura-collaborative-robot/
https://www.comau.com/en/competencies/robotics-automation/collaborative-robotics/aura-collaborative-robot/
https://www.universal-robots.com/
https://github.com/OAI/OpenAPI-Specification/tree/main
https://github.com/OAI/OpenAPI-Specification/tree/main
https://swagger.io/docs/specification/2-0/what-is-swagger/
https://swagger.io/docs/specification/2-0/what-is-swagger/
http://www.sciencedirect.com/science/article/pii/S2212827116309489
https://link.springer.com/article/10.1007/s00170-019-03790-3
https://www.sciencedirect.com/science/article/pii/S0957415818301326
http://www.sciencedirect.com/science/article/pii/S0007850616300385
https://www.docker.com/
https://www.betaalvereniging.nl/en/safety/magma/
https://attack.mitre.org/

