BB Ref. Ares(2024)470806 - 22/01/2024

Open-Digital-Industrial and Networking pilot lines using modular
components for scalable production

Grant Agreement No : 101017141

Project Acronym : ODIN

Project Start Date 1%t January, 2021

Consortium : UNIVERSITY OF PATRAS - LABORATORY FOR MANUFACTURING

SYSTEMS AND AUTOMATION

FUNDACION TECNALIA RESEARCH & INNOVATION
KUNGSLIGA TEKNISKA HOEGSKOLAN
TAMPEREEN KORKEAKOULUSAATIO SR

COMAU SPA

PILZ INDUSTRIEELEKTRONIK S. L.

ROBOCEPTION GMBH

VISUAL COMPONENTS OY

INTRASOFT INTERNATIONAL SA

GRUPO S21SEC GESTION, S.A.

FUNDACION AIC AUTOMOTIVE INTELLIGENCE CENTER FUNDAZIOA

DGH ROBOTICA, AUTOMATIZACION Y MANTENIMIENTO
INDUSTRIAL SA

PSA AUTOMOBILES S.A.

AEROTECNIC COMPOSITES SL. U.
WHIRLPOOL EMEA SPA

WHIRLPOOL MANAGEMENT EMEA SRL

fD oN—
] @ m
/ 00

Title - ODIN Digital Component virtual commissioning framework — Final VVersion
Reference : D34

Availability : Public

Date : 22/01/2024

Author/s VIS, TECNALIA, LMS

Summary:

The purpose of this document is to present the final version of the integrated digital tools for virtual
commissioning and control.

ODIN 101017141

Table of Contents

LIST OF FIGURES ..ottt ettt b bbbt 3
LIST OF TABLES ...ttt bbbt b bbbttt be e 4
1. EXECUTIVE SUMMARY ...cooiiiieiitee st see ettt s sae e sastessessessessessessesessansens 5
2. INTRODUCTION. ..ottt ee ettt e e ste e tesae st e e e e esessesteseessesseseeneenansens 6
3. VIRTUAL COMMISSIONING......cocotiiiiitiriinie ettt st nnen 7
3.1. Virtual Commissioning iN ODINcccoiiiiiiiiiiiecc e 8

I @ oL T 01 (=T - Lot SR 9
3.2.1. ROS 2 CONNECLIVITY ..ottt 9

3.3. COMMUNICALION TNEEITACE .. .eovve et neas 10
3.3 L UR PIUGIN (et te sttt sreena et 11

3.3.2. KUKA PIUGIN vttt st eneene s 12

4. ROBOT VIRTUAL COMMISSIONINGociiiiiiiniisiinisie et 14
4.1. Workflow for virtual cCommisSSIONINGccoeviiiiie i 15
4.1.1. Robot programing and simulation............ccccooveviiiiiie i 15

4.1.2. Post-process to the robot [anguage ..o 16

4.1.3. Upload the robot program to the VRCcccoiiiiiiiiiie e 19

4.1.4. Configuration of the robot inthe VRC.........cccoiiiiiiiicie e 19

4.1.5. POSITION SEL UPD ...ttt 20

4.1.6. Program validation in the VRCccoiiiiiiiieicee s 20

4.1.7. SigNAlS MAPPING .e.vveviiieeiecie ettt st e s te e e b e ere e besae e e e besaeearas 21

4.1.8. Virtual validation.............ccccoiiiiiiiiiiicisce s 21

5. CONTROL SYSTEMS COMMISSIONINGcccooiiiiiiiniiieieieeeese e 23
B. CONCLUSIONSottt ettt s et a b e be st et e st et et e s eraeneareas 24
O €1 @ 35T AN & A SR OTRP 25
8. REFERENCES...... .ottt ettt sttt st te st e e et e e enenneereas 26

ODIN 101017141

LIST OF FIGURES

Figure 1: Engineering project with and without Virtual Commissioning [3]cccccovveiniininienencnnn 7
Figure 2: System lifecycle used in ODIN with and without virtual commissioningc.ccoceeevvenee. 7
Figure 3: Overview of the communication interfaces used in ODIN for Virtual Commissioning 8
Figure 4: Overview of the open interfaces and current development within ODINcc.ccoceierenne. 9
Figure 5: Connectivity schema between Visual Components and ROS2. ... 9
Figure 6: Workflow of ROS2 message to VIS sending joint goal to obtain interpolation time 10
Figure 7: Screenshots of the configuration and programming of a KUKA robot within VC 4.0......... 12
Figure 8: Screenshot of the configuration window within the simulation for RCS and KRL 13
Figure 9: Robot program editor available in VC 4.0 (F4.8)ccovveiiiiiie e 14
Figure 10: Screenshot of the robot executor properties Ul ... 15
Figure 11: Robot programming Within VC 4.0 ..ot 16
Figure 12: Screenshot of VC 4.0 Ul showing access t0 POSt PrOCESS..........ccocererierieiniininisisiesiesieeas 16
Figure 13: Screenshot of the KUKA SUNRISE - Java POSt-PrOCESS.......cc.cvveieerieieeieiieseesvesieeneseeenns 17
Figure 14: Screenshot of the post-process tab available at VC 4.0 for UR, PP Type URP (left) and PP

TYPE SCIIPL (FTGNT) ..ttt 17
Figure 15: Screenshot of the post-processing of robot program of the COMAU Aura robot............... 19
Figure 16: Upload process of the robot program into the virtual robot controller............c.ccccovevenenne. 19
Figure 17: Configuration of the virtual controller with the same operation parameter than the simulation

.. 20
Figure 18: Position synchronization of the robots iNn VC 4.0........cccccociiiiiiecicic e 20
Figure 19: Validation of the robot CONIIONIETcoiiiiiiieeee e 21

Figure 20: Process of connecting the UR VRC and the robot in the simulation through the
COMMUNICAEION TNTEITACE ...t ettt enes 21

Figure 21: UR robot in VC 4.0 connected to the virtual controller through the communication interface
displaying the program uploaded in the VRCcooiiiiiiiiii s 22

Figure 22: KUKA Robot in VC 4.0 connected to the virtual controller through the communication
interface displaying the program uploaded inthe VRC ..o 22

Figure 23: Screenshot of the virtual environment using the OPC communication with control (PLC)
Validation VS SIMUIBLION ..ot sre e sne e 23

ODIN 101017141

LIST OF TABLES
Table 1: Commands provided by the communication feature of Visual Components 4.0 10
Table 2: Statements available to program a robot in the VC 4.0ccoeviiiiiiiiiiiceeee 14

ODIN 101017141

1. EXECUTIVE SUMMARY

The target of this document is to present the work being developed in Task 3.5 of the ODIN project.
This task targets the virtual control and commissioning of the pilots. The task extends the work
developed within WP3 to the development of interfaces to validate pilots’ requirements using virtual
control and commissioning.

The document contains the work towards the development of communication interfaces for the
OpenFlow and Robot, for virtual control and commissioning. Virtual commission is developed in one
line to address the validation of the automation systems supported by the virtual control with the
development of the interfaces and connectivity.

The deliverable provides details about the development of the communication interfaces implemented
on top of the simulation platform used in ODIN, Visual Components 4.0 (VC 4.0) release 4.8, and the
development of communication interfaces for robots used in the project pilots, COMAU, UR and
KUKA.

The deliverable ends with the workflow introduced for virtual commissioning and the requirements
regarding access to virtual robot controllers (VRC).

ODIN 101017141

2. INTRODUCTION

This deliverable presents the work developed in task 3.5 towards the virtual control and commissioning
of the pilots. In this document the work completed is presented by starting with a brief overview of
virtual commissioning and the relevance under the ODIN project.

Aligned with the objectives of ODIN project, the further development of technologies and
methodologies that support virtual commissioning and control and the introduction of them in the pilots
will enhance productivity, accelerating the deployment of automation and robotics technologies.

Section 3 starts with virtual commissioning, which is the phase before the commissioning of a
manufacturing system. As presented in section 3, it is an important phase of the automation system
lifecycle, and the availability of technologies that enables will enhance productivity, avoiding costly
mistakes, accelerating production ramp-up and achieving quality. The section continues with the work
developed towards the integration with OpenFlow developing ROS 2 Connectivity (section 3.2).

The deliverable continues with section 3.3 and the work completed towards the development of
interfaces for communication, for enabling the virtual control and commissioning. The development of
the control has been done using the open interfaces provided by VC 4.0, and the communication
interface for the UR and KUKA plugins for virtual commissioning.

The deliverable ends with the robot virtual commissioning in section 4, which includes the workflow
for robot virtual commissioning.

ODIN 101017141

3. VIRTUAL COMMISSIONING

To have a common understanding about virtual commissioning, it is required to define what
commissioning means in discrete manufacturing automation. According to [1], commissioning is
defined as “the task to put the mounted products on time in readiness for operation, to verify their
readiness for operation and, if readiness for operation is not given, to establish it”. Commissioning is
the final part of the system development and delivery process that results in a fully operational and
tested system ready to use, which can be delivered to the customer [2].

In practice, commissioning of automation systems includes various procedures to check, inspect and
test every operational component of the system, from physical fit of components and connections of
electrical wiring to correct operation of work cells and the system as a whole. For controls’
commissioning the activities include correction of software errors, correction of addressing failures,
teaching of sensor positions and adjustment of parameters such as speeds [2]. Out of the total
commissioning phase, time spent on control software and electrics is by far the most time-consuming
part with up to 90% share. As Figure 1 shows, the utilization of virtual commissioning reduces
considerably the time improving production ramp-up, integration and avoidance of errors. [2], [3].

Real Commissioning
Today Activity feasible
Assembly using simulation
Assembly
Real
T Virtual Commissioning
Modeling || Commissioning Time
S~ —— 5 ~- o, d
Effort Gain of time
Cost Benefit
Hardware and Software tools Shortening of Time-to-Market
Work cost for modelling Synergies
Work cost for operating simulation Quality improvements

Figure 1: Engineering project with and without Virtual Commissioning [3]

The system lifecycle is presented in deliverable 3.2 and used along the project. Figure 2 introduces the
virtual commissioning phase in the overall system lifecycle, and its integration within the simulation
environment through connectivity technologies and its application in the digital twin.

Engineering Commissioning

Virtual

Engineering Commissioning

Commissioning

Figure 2: System lifecycle used in ODIN with and without virtual commissioning

ODIN 101017141

3.1. Virtual Commissioning in ODIN

Task 3.5 in ODIN has extended the work developed in previous WP3 tasks to virtual control and
commissioning of the pilots. To achieve this objective, new communication interfaces have been
developed and integrated inside the digital simulation platform, provided by Visual Components 4.0
(VC 4.0), which allows communicating the DC with the OC to enable virtual control of the pilot in the
simulation environment. The developments within the project have been integrated in the different
release of the platform, being at the moment of completing this deliverable the release 4.8 (VC 4.0
(r.4.8) the one in use.

During the tasks development, the work has been focused on the identification of the interfaces, and
data models used in other tasks, and extend it with the pilot requirements of work package 5 (WP5). As
mentioned in the description of work, the interfaces developed will be validated in the three pilots to
ensure their validity during the project. The development of the virtual commissioning in ODIN is
considering the pilot requirements, in addition to considering the interoperability requirements with the
rest of the modules developed in the project. The three pilots in ODIN contain different automation
equipment which can be validated during the virtual commissioning phase:

- Robot control

- PLC

- Sensors

- Cameras

- etc.
Visual Components 4.0 Premium, particularly the release 4.8, used in the final stage of task 3.5, provide
the communication feature, described in more detail in section 3.3, which allows the development of
communication plugins (Figure 3). Currently OPC UA is available and allows the control, validation
and virtual commissioning of systems that supports that communication protocol.

Two plugins over the communication interface have been developed and deployed for supporting the
task in the ODIN project in the virtual commissioning of the robots, the UR plugin (3.3.1) and the
KUKA plugin (3.3.2). In addition to the communication interface, Visual Components 4.0 provides two
open interfaces (3.2), .Net and Python. The open interfaces are the based to develop the plugin for ROS2
connectivity (3.2.1) that in addition to connect with ROS 2 is the base for the communication through
OpenFlow.

Figure 3 summarizes the interfaces developed and used in ODIN under the scope of task 3.5. Despite
the task being completed, its utilization continues and the final integration within the pilots will be
reported in D5.5.

(Python API > (Universal Robots>
C KUKA >

@)

Visual Components Premium

C# .Net API (OPC UA Server >

ROS 2 OpenFlow

Figure 3: Overview of the communication interfaces used in ODIN for Virtual Commissioning

8-

ODIN 101017141

While the virtual control and validation has been focused on the development of ROS2 through the .Net
interface, the virtual commissioning of the robots (UR and KUKA) have been achieved using dedicated
plugins to support the full virtual commissioning in the white goods and aeronautics pilots and partially
in the case of the aerospace pilot as it is explained in section 4.1.2.3.

3.2. Open interface

VC 4.0 provides two open interfaces, .Net and python (Figure 4), which allow the development of the
required interfaces. Both interfaces provide an API for developers available through VC 4.0 user
interface, which is extensively documented in the help menu of VC 4.0.

rF 9
L

Net AP| ROS 2 ||< OpenFlow

Python API

rF
L

F 3
Y

TCP/IP

Prototype

Figure 4: Overview of the open interfaces and current development within ODIN

While the python interface allows to create situation components and the development of add-ons, like
the post-processors developed and integrated in the Programing tab, the .Net interface is targeting the
development of plugins and extensions.

Within the ODIN project, the python interface is mainly used for the development of simulation models,
but also for prototyping initial communication interfaces through TCP/IP or dedicated interfaces. The
.Net interface has been used, mainly for the development of ROS 2 connectivity and the robotics
communication interface.

3.2.1. ROS 2 Connectivity

Using the .Net interface, a plugin for ROS 2 connectivity has been developed. This plug-in has been
under active development until the end of the task and has integrated the ODIN communication
requirements through OpenFlow. It supports, publishes, and subscribes to ROS2 topics as showed in
Figure 5.

TOPIC

VISUAL

COMPONENTS ROS2

Publish TOPIC

Message Subscribe

Message

Figure 5: Connectivity schema between Visual Components and ROS2

ODIN 101017141

The communication through ROS2 also allows the connectivity between VC 4.0 and OpenFlow, which
also supports ROS2 interface. In that way it is integrated though the ODIN network component provided
by OpenFlow with the rest of the ODIN connected components.

An example of the completed implementation is the use case showed in Figure 6. In this use case, joint
goals are received from ROS2 to VC 4.0. The message is received through the topic and VC 4.0 creates
trajectory points and statements. Once these are created, within VC 4.0 is checked reachability, joint
configuration and singularity. After this, VC 4.0 sends the interpolation time through the topic, which
is received by ROS2, request id and success message (Figure 6).

B

Figure 6: Workflow of ROS2 message to VIS sending joint goal to obtain interpolation time

Additionally, development and integration efforts have been devoted specifically for the functionalities
of connecting the digital simulation in VC 4.0 with the Digital Twin module of KTH as well as the Al
task planner of LMS reported in D3.3.

3.3. Communication interface

The communication interface is a feature provided by VC 4.0 that allows the development and
deployment of connectivity plug-ins. This feature and its commands can be accessed from the
Connectivity tab accessible through the user interface of VC 4.0.

The feature provides the commands described in Table 1, and allows communication between the
virtual systems (sensors, actuators, conveyors, robots, machines, etc.) in the virtual environment and
the controllers which can be real or virtual.

Table 1: Commands provided by the communication feature of Visual Components 4.0

Commands Description

Add Group Adds and lists a new variable group with a selected connection.

Add Server Adds a new connection for a selected plugin.

Add Variables Opens an editor for connecting simulation variables to server variables.

Clear Removes all connections for each plugin.

Disconnect Disconnects Visual Components Premium 4.8 from a selected connection.

Edit Connection Displayg options in a task pane for editing or troubleshooting a selected
connection.

Export Exports the configuration of all connections in an XML format.

Import Imports_an XML or CFG file that defines the configuration of one or more
connections.

-10-

ODIN 101017141

Commands Description

Reconnect Attempts to reconnect Visual Components Premium 4.8 to a selected connection.
(Server) Remove | Removes a selected connection.

(Variable)

Removes a selected variable group.
Remove

Restore Windows | Restores the workspace of the current view to its default setting.

Displays a list of panels that can be shown/hidden from the current view of the

Show workspace.

Shows a panel for managing the connection between simulation and server

Show Variables .
variables.

The work developed towards the development of communication interfaces for ODIN are targeting the
connectivity with UR (3.3.1) and KUKA (3.3.2) to match the robot requirements towards virtual
commissioning in the white goods pilot and in the aeronautics pilot.

The base for the development has been the RRS (Realistic Robot Simulation) robot controller provided
within VC 4.0 API, which visualizes within the simulation environment the realistic robot motions by
using the native controller of a robot, particularly in ODIN the VRC controllers as presented in section
4.1.

3.3.1. UR plugin

Support for UR connectivity has been developed within ODIN, including a plugin which allows
connecting the Universal Robot controller through RTDE interface (Real Time Data Exchange). The
plugin for the communication interface enables seamless communication between the virtual robot and
the virtual robot controller (VRC).

The Real-time data exchange (RTDE) interface provides a cyclic stream of value updates from the
controller and listens for inputs. The interface updates (sends and handles data packages) at a fixed
frequency and is based on a binary application-level protocol transmitted over (insecure) TCP/IP socket
communication. The robot controller uses TCP port 30004 for the interface. The connection plugin's
RTDE client implementation developed uses an automatically assigned port (either by .NET or
Windows) for the socket.

The basic operation principle involves two modes, configuration and run. First, the client configures
with the server the data it wants to receive and data it wants to send. This is done in configuration mode.
After configuration has been set, the client can request the controller to enter run mode where the
controller sends the requested data at the fixed 125 Hz frequency and the client can send its data at a
preferred rate. Run mode can also be paused by request of the client to return to configuration mode.

The data packages the client and controller send to one another are defined with input and output recipes
in configuration mode:

- Input is data flow from client to controller.
- Output is data flow from controller to client.

The recipes contain one or more variables from a known fixed set, and the associated data packages
contain values for all variables in the recipe.

The current version of the RTDE protocol supports only a single output recipe per client, but up to 255
input recipes can be defined per client. Furthermore, it is not possible to remove an input recipe without
disconnecting and creating an entirely new one. This means that adding/removing a variable pair or

1 More information about the RTDE interface can be found at https://www.universal-
robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-quide/

-11-

https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/
https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/

ODIN 101017141

activating/deactivating a variable group always causes a recipe update. Since the recipe update can only
be done in configuration mode, the RTDE client implementation automatically requests pausing from
the controller, and then either a) redefines the output recipe shared between all variable groups or b)
registers a new input recipe for the activated variable group.

The RTDE protocol does not provide any way to poll the controller for value updates. This causes some
limitations that differentiate the RTDE connection plugin from others. The RTDE connection plugin
manages a local cache of the variable values for all configured recipes (active variable groups). This
allows using cyclic update mode to read output recipe values at any desired frequency and sending
whole input recipe data to the controller in event-based update mode. However, since the output recipe
updates are received and input recipe data is sent asynchronously, the update delay timing functionality
of Connectivity core does not really work with the RTDE plugin. The times measured are only
processing times to get data in or out of the cache. That is, they do not include the network delay or
even how old the received output recipe data is when the cache is read using cyclic update mode.

The plugin has been extended with the development of the post-processor which converts the robot
program statements from VC 4.0 to the UR language (.urp). To validate the program Universal Robots
provides, free of charge, the URSim robot controller simulator? which allows to load the robot program
and validate to later visualize for virtual commissioning purposes.

3.3.2. KUKA plugin

The KUKA communication plugin has been developed targeting connectivity to KUKA RCS (KRCS-
KUKA Robot Control System). This plugin can be activated when necessary and requires a license for
the KUKA VRC.

The seamlessly integration within the VC 4.0 Ul facilitates its use, as the user only needs to concentrate
in the creation of the simulation, choosing the robot, adding the tools, configuring robot, tool and signals
and creating the program within VVC 4.0 (Figure 7).

Figure 7: Screenshots of the configuration and programming of a KUKA robot within VC 4.0

2 Available for downloading from https://www.universal-robots.com/download/software-e-series/simulator-non-
linux/offline-simulator-e-series-ur-sim-for-non-linux-594/

-12-

https://www.universal-robots.com/download/software-e-series/simulator-non-linux/offline-simulator-e-series-ur-sim-for-non-linux-594/
https://www.universal-robots.com/download/software-e-series/simulator-non-linux/offline-simulator-e-series-ur-sim-for-non-linux-594/

ODIN

101017141

The post-processing is done according to the configuration defined in the simulation components, that
includes the KRL and the RCS (Figure 8).

Component Properties

Coordinates

@ World O Parent O Object

08 12576.226 4 9754.185 z B
rx [0 [130

Default FastMeasurement

¥ Motion execution
Motion

RCS version

Print RCS calls

Machine data generation

v Program execution

Program
Program End
Step mode
v Submits
Submit 1
Submit 2

Submit 3

RCS KrlExecutor SignalActions Accessories

Controller

Main

Stop Submits

Figure 8: Screenshot of the configuration window within the simulation for RCS and KRL

-13-

ODIN 101017141

4. RoBOT VIRTUAL COMMISSIONING

The virtual environment provided within VC 4.0 (r4.8) provides the functionalities to program a robot
and simulate the robot. The robot program editor presented in D3.2 deploys the functionalities to create
arobot program or modify existing ones or generated with path planning and other available tools within
VC 4.0. Table 2 shows the statements available in VC 4.0 (r4.8) to program a robot through the robot
program editor.

Table 2: Statements available to program a robot in the VC 4.0

Statement Description

Break Ends the execution of loop.

Call 5equence Executes a specified subroutine in program.

Comment Leaves a comment in program.

Continue Sets loop to continue from next iteration.

Define Base Sets the properties of a base frame in robot.

Define Tool Sets the properties of a tool frame in robot.

Delay Delays the execution of program.

Halt Stops the execution of program.

If Defines an if-then-else condition for executing one group of statements if the
condition is True or another group of statements if the condition is False.

Joint Motion Executes a point-to-point motion to a position by interpolating joint values.

Linear Motion Executes a linear motion to a position based on current configuration.

Print Sends feedback to be printed in the Output panel.

Program Synchronize |Synchronizes program execution with other programmable components using a
matching sync message.

Return Ends the execution of routine.

Set Binary Output Sets the value of a digital signal connected to a robot output or signals an
action in the robot.

Touch-up Updates the properties of a motion statement for a selected robot position.

Wait for Binary Input |Waits for a digital signal connected to a robot input to reach a specific value.

While Defines a condition for executing a group of statements in a loop.

While programming a robot in the virtual layout the user can just add the statements in the desired
orders. Statements can be edited and rearranged in through the user interface just moving them in the
desired order through the program editor Ul (Figure 9).

AURA-170-2.8

Subprograms

Main B

T-B g
BEG® EE-83

Set OUT[O] == True

PTP P2 TCP ref1 100%
.~ LIN B4 TCP refl 1000mm/s
" LIN P3 TCP refl 1000mm/s

LIN P5 TCP refl 1000mmy's
<~ LIN P6 TCP refl 1000mm/s
»" LIN P7 TCP refl 1000mm/s
LIN P8 TCP ref1 1000mm/s
.~ LIN P9 TCP refl 1000mm/s
.#" LIN P10 TCP refl 1000mm/s
2" LIN P11 TCP refl 1000mm/s
LIN P12 TCP ref1 1000mm/s
.~ LIN P13 TCP refl 1000mm/s
.~ LIN P14 TCP ref1 1000mm/s
* PTP P15 TCP refl 100%
Set OUT[0] == False

Figure 9: Robot program editor available in VC 4.0 (r4.8)

-14-

ODIN 101017141

Once the robot program has been created and the initial simulations have been created, the statements
can be simulated using the executor available in VC 4.0, which has been extended during the project.
The executor in VC 4.0 reads, write and execute a robot program providing the properties showed in
Figure 10, which can be modified by the user.

Properties

MName RobotExecutor

DigitalinputSignals Booleansignaliiap

DigitalOutputSignals JEEr-aeis et k-t

lsLooping |:|

IsEnabled

Controller RobotContraller

RrsRobotController RrsRobotController

Figure 10: Screenshot of the robot executor properties Ul

Once the robot is set up, configured in the layout, and programmed, the robot program routines must be
transferred to a language that the robot can understand, action known as post-process. Every robot
manufacturer has its own robot program language that runs in its proprietary robot controller. The post-
process transfers the robot program created during the simulation stage into the language that the robot
can run into its controller.

The work developed in ODIN project has been focused on the post-processors for UR, KUKA and
COMAU aligned with the white goods pilot, the aeronautics pilot and the automotive pilot.

After post-processing the robot program can be uploaded in the robot controller and start testing the
program, but as mentioned in section 3 and aligned with the target of the Task 3.5, the use of virtual
commissioning will allow to validate the code and identify possible errors. To achieve the virtual
commissioning, the workflow presented in the next section has been followed.

4.1. Workflow for virtual commissioning

Once the pilot layout has been created in the virtual environment and the initial simulations have been
completed, it is possible to start the virtual commissioning or the robots. For achieving virtual
commissioning, a workflow of eight steps presented below has been set up.

4.1.1. Robot programing and simulation

The robot is programmed in VC 4.0 using the robot programming statements, presented in Table 2 using
the Ul as showed in Figure 11 which provides access to the program editor. Modification to the robot
programming to change parameters and create new programs can be also done with the robot program
editor (detailed in Figure 9).

-15-

ODIN 101017141

Figure 11: Robot programming within VC 4.0

In VC 4.0 all the robots are programmed with the same methodology, independent of the brand. This
facilitates the learning of the software and the adaptation to different brands. During the concept and
engineering phase this characteristic allows the user to analyze the performance of different robot
brands and models allowing them to choose the one which adapts better to the requirements of the tasks,
without adding additional robot programing effort as the program only requires to be created once and
is reused when simulating the different robots.

4.1.2. Post-process to the robot language

When the simulation results match the operational requirements, the robot program in the simulation is
postprocessed to the robot language. The access to the post processor is through the Ul, PROGRAM
tab/ Post Process button (Figure 12).

vy BA s Engine Assembly Layout.vemx - Visual Components Premium 4.8
FILE HOME PROCESS MODELING DRAWING HELP CONNECTIVITY

o Import :'-' Interfaces feasure ? ‘r - 1| Py D Connecting Lines 'ﬂ' Edit Detectors eference Spe PF Post Process
= .

@ Attach 4 Signals] Traces ctors o cceleratio
Robot | Select Move | Jog
o v

ion
D Teach Overlay Menu s I:‘ Singularity

Component Connect ools Manipulation

Figure 12: Screenshot of VC 4.0 Ul showing access to Post Process

Once clicked, the Post Process button the generation of the specific code for the robot brand/model
starts. The developed add-on selects the correct post processor, based on the properties defined of the
robot within the virtual space.

As mentioned at the beginning of this section, each robot brand has its own programming language.
Furthermore, depending on the model of controller the robot is using, has different characteristics.
Within the ODIN project the development has been focused on the development and maintenance of
the program post-processor as well as the communication plugins (section 3.3) required in the project.

41.2.1. KUKA

For the KUKA robot, used in the aeronautics pilot, the KRL is supported (KUKA Robot Language).
The post-processor generates one *.src and one *.dat file. Base/tool frame definitions are written at the
beginning of the main routine, which can be commented on the robot settings definition in VC 4.0 Ul.

-16-

ODIN 101017141

Furthermore, the post-processor also supports SUNRISE -Java for the required KUKA robot controllers
defined within the simulation. One *.java and one RoboticsAPI.data.xml file is generated. The *.java
file contains the program itself and the base/tool frame definitions as well as position frames are written
into the RoboticsAPl.data.xml file (Figure 13). Simulation 10s should be mapped to real 10s using
wrapper functions GetDO and GetDI in .java file so that for given simulation 10 port those functions
should return desired Output or Input object.

LBR iisy 11 R1300 LI SN

Subprograms

S Y

20

File name: | Assembly jrva

Save astype KUKA-Sunrise Robot Progeam file (*java)

A Hide Feidens Sove Cancel

Figure 13: Screenshot of the KUKA SUNRISE - Java post-process

41.2.2. UR

For the UR robot used in the white goods pilot, the post-processor produces a *.urp file for each routine
defined in VC 4.0 program editor. But before creatin the *.urp file, is required to set up the configuration
in the window opened after clicking the Post Processor button (Figure 14).

Select Output Select Output

Use Active TCP [:] Use set_tcp

Hide Sub Progr...] Use acceleratio... [_|
Path motion type Ealeia

movel as joint v... D

Input mapping get_configurable_digital_in R ovel

Output figu | igital - = .
SliNigurieleligle i set_configurable_digital_out Input mapping get_configurable_digital_in

Post P
o oSS (O INguELI LN set_configurable_digital_out

Post Process

Figure 14: Screenshot of the post-process tab available at VC 4.0 for UR, PP Type URP (left)
and PP Type Script (right)

-17-

ODIN

101017141

The configuration includes:
- "PP Type"

O

O

If set to "Script" produces on .script file instead, which that can be imported into a
script command.

“URP” is supported only for e-Series UR models. (Note that in .urp, subroutine calls
are only possible from the main routine)

- Tool definition:

O

The TCP name used in VC 4.0 should be defined in Polyscope under INSTALLATION
> TCP

= VCTool>X,Y,Z >TCPPosition X,Y,Z
= VC Tool > Rx, Ry, Rz > TCP Orientation Unit (RPY in degree)

= *NULL* TCP in VC 4.0 will create 'Tool0' in MoveL and MoveJ . DEFINE
THE TCP NAME as 'Tool0' IN POLYSCOPE UNDER INSTALLATION >
TCP with position and orientation as '0'

- Sequence (routines):

@)

O

During post-process, each subroutine in VC 4.0 is created as *.urp file

Loading the *.urp (main) file in Polyscope, Call statement and SubProg with the
(sequence) routine name is created.

Users should manually navigate to the *.urp(sequence) file from their file system and
select it. Also assign it to Call statement.

- Supported VC 4.0 statements:

o PTP/LIN/Path, Wait Input, Set output, Halt, Comment, Call, Assign, If, While
- Settings:

o Use Active TCP (URP): sets if default TCP is used or if TCP is specified in
statement.

o Hide Sub Program Tree (URP): Hide/show subroutine tree in URP.

o Use set_tcp (Script): Use set_tcp function to set active tool pose. Use this if there
are many tool frames in your program created in VC 4.0.

o Use acceleration values (Script): Use optional parameter for accelerationon motions.

o movel (Figure 14) as joint values (Script): Post movel as joint values instead of
cartesian pose.

o Path motion type (URP/Script, Figure 14): Post path statement as movel or movep.

o Input mapping (URP/Script, Figure 14): Select 10 type where wait input statements are
mapped.

o Output mapping (URP/Script, Figure 14): Select 10 type where set ouput statements
are mapped.

4.1.2.3. COMAU

For the COMAU robot used in the automotive pilot, the post-processor generates one *.pdl file
including main and subroutines and one *.Isv file containing global variables such as positions.
Base/Tool definition are written at the beginning of the program before the actual main routine is called.

(Figure 15).

-18-

ODIN 101017141

Figure 15: Screenshot of the post-processing of robot program of the COMAU Aura robot

4.1.3. Upload the robot program to the VRC

After the program has been post-processed into the language of the robot, the file is uploaded to the
robot VRC. Similar processes are followed in the UR and in the KUKA.

In the case of the COMAU robot, the communication interface (section 3.3) has not been developed
because the VRC is not available so this step and the following for virtual commissioning are followed
and by uploading the post-processed file directly to the real robot as it has been presented in D5.4.

Figure 16 shows the process of uploading the *.urp file into the VRC for the UR robot.

BE2+ 08

popey:
a o
8 - xXx#psZ

Figure 16: Upload process of the robot program into the virtual robot controller

4.1.4. Configuration of the robot in the VRC

The VRC, which mirrors the real controller virtually, should be configured with the same operational
parameters as the robot in the simulation. Figure 17, shows how the operational are adjusted in the
VRC, in this case in the UR.

-19-

ODIN 101017141

Pavens

1l [Z] B Payoad v RI[+] 1

1 Payload
Mounting
1/0 Setup
Tool I/0
Variables
Startup

Smooth
Transition

Home
Conveyor
Tracking
Screwdriving

> safety

Payload
Mass
Center of Gravity | R
Ccx

cy

0.000 kg | |

|
&

]

1 Remember to set]

Inertia (kg m?)

O uUse custom Ing \‘

Inertia given with &

BE

BE

Tool Flange

4
1

o

O tooifiange axes

Figure 17: Configuration of the virtual controller with the same operation parameter than the
simulation

4.1.5. Position set up

In addition to the robot configuration, both robots, the one in the simulation and the one in VRC should
be in the same initial position before starting the virtual commissioning process (Figure 18).

R 2 ¢ QKM

Universal Robots Graphical Programming Environment -+ X

Move Robot into Position.

Hold down 'Move robot to' to perform the movement shown. Release the button to abort.
Push 'Manual' to move the robot into position manually.

€ cancel

() normal Sp 00% Jatior
\J =

Figure 18: Position synchronization of the robots in VC 4.0

4.1.6. Program validation in the VRC

VRC allows to test and validate the code upload, this facilitates to verify the robot program post-
processed into the virtual controller (Figure 19).

ODIN 101017141

Universal Robots Graphical Programming Environment

R
RE 2+ Q

Program | Installation Move 1o

Q Command - Variables
Move
Tl BRRIEE
Waypoint 2 E=i=0 =
Direction 3 %« Move) T
4 ® Waypoint_1
Wait 5 = i—0
Set 6 9 2 Loopi<2
7 If ==
Popup ¢ b Ifi==0
8 9« Move|
Halt g ® Waypoint_2
Comment 10 @+ Movel
4 11 ® Waypoint_3 I 4
e 12 ? % Else
Set Payload 13 & Comment s
> Advanced 14| #-4 Movel
15 » @ Waypoint_4
> Templates 16 | oFF Movel .
17 ® Waypoint_5 t
18 @ b Movel iy EI
19 ® Waypoint_6
20 9 Movel
21 ® Waypoi
rypoint_7 Q v
22 2= =i]
-—
29> XBREZ
—_—

O Running

Figure 19: Validation of the robot controller

4.1.7. Signals mapping

Signals between the VRC and the simulation are mapped and the connection between both virtual
environments are established through the communication interface.

T[RRI
o Deat ot
2 Ritoicken'U"onm etomct ot
o eot eoar Lo Harde g
ot chose e i

+ dnin Password IN\
Voadliittle: cdicdic L laiathe cossiad Lheccd

Figure 20: Process of connecting the UR VRC and the robot in the simulation through the
communication interface

4.1.8. Virtual validation

As long as the virtual commissioning of the system starts, the VRC runs the programs according to the
signals received from the simulation and the results are visualized in the virtual robot at the virtual
environment provided by VC 4.0 verifying the robot program is performing as expected during the
simulation phase. Figure 21 shows this last step for UR robot.

-21-

ODIN 101017141

TR

o Dt i Eglih
2 Rt clickon IS eonmbetom
o St Yeoar eyt Hander”
et atdochoos e fom |

Figure 21: UR robot in VC 4.0 connected to the virtual controller through the communication
interface displaying the program uploaded in the VRC

| € 11:10:55 AM 10/9/2019 SIMULATE 2
wat for (input 7)

Y 2 okF Gripperipen()

SFOLD INI;RAPE)

SCOMNAHDS.

SFOLD OUT 8 ** State-FALSE ;2(PE}IR 8.3.48
| UKUKATPBASLS ,TCOUT,3U0UTX,RP 238, 33, SFALSE, 6:

29 GFOLD OUT 7 ' State-TRUE ;R(PE)RR 8.3.%8
 UMUKATPBASIS ,XCOUT,JV0UTX,RP 2:7, 32, S:TRUE, 6:

T

+

Q0es| FOLD WALT FOR ¢ IN 7 **):%¢PEYRR 9.3.48
L UMUKATPBASTS, ACERT_WATT_FOR,2UEXT_WAIT_FOR,2P 21,
oAz, S:§IN, 6:7, 73, 9:

I
+

@1 GFOLD OUT 7 '* StatesFALSE ;RUPE)RK 8.3.48
 UMUKATPBASIS SCOUT RVOUTX,ZP 2:7, 92, SIFALSE, 6:

1
+

92 FOLD OUT 101 °* State-FALSE ;R(PE)3R 8.3.48
& LMUKATPBASTS , XCOUT , JUOUTY, TP 23101, §:, S:FALSE,
o6

93 ENO

an
95 DEF GripperClose() T
[KRCARI\PROGRAM DEMO\DEMO SRC 30, Coi0 |-y

I

Wil

@ s s By @2 @

Figure 22: KUKA Robot in VC 4.0 connected to the virtual controller through the
communication interface displaying the program uploaded in the VRC

-22-

ODIN 101017141

5. CONTROL SYSTEMS COMMISSIONING

In addition to ROS 2 connectivity developed to connect through the OpenFlow, VC 4.0 allows the
connectivity through OPC UA allowing the control of the systems connecting directly to the PLC
(Figure 23). The utilization of this interface for control and validation has been discussed for the white
goods pilot for controlling the PLC in the pilot.

Without PLC connection With PLC connection

Figure 23: Screenshot of the virtual environment using the OPC communication with control
(PLC) validation vs simulation

-23-

ODIN 101017141

6. CONCLUSIONS

The work developed in Task 3.5 towards virtual control and commissioning has been focused on
identifying the initial requirements for virtual commissioning of robots, targeting the robots used in the
white good pilot and aeronautics pilot. The work has been completed and the results obtained are the
base to continue the work in the final part of the ODIN project, particularly WP5.

The connectivity plug-in for ROS2 to integrate with OpenFlow has been deployed and is operational
for robot movement and messages through OpenFlow has been completed. Connectivity with other
modules such as the KTH’s digital twin and LMS’s Al task planner has been deployed as reported in
D3.3.

Despite the task has been completed, the integration work will continue in WP5 for the three pilots
giving the opportunity to extend the functionalities.

-24-

101017141

7. GLOSSARY

API Application Program Interface

IP Internet Protocol

TCP Transmission Control Protocol

OoC Open Component

OPC UA Open Platform Communication Unified
Architecture

DC Digital Component

RTDE Real Time Data Exchange

UR Universal Robots

urp universal robot program (extension)

RCS Robot Control System

ROS Robot Operating System

RRS Realistic Robot Simulation

VC4.0 Visual Components 4.0

VRC Virtual Robot Controller

WP Work Package

-25-

ODIN 101017141

8. REFERENCES

[1] S. Bangsow and U. Giinther, ‘Creating a Model for Virtual Commissioning of a Line Head
Control Using Discrete Event Simulation’, in Use Cases of Discrete Event Simulation, S.
Bangsow, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 117-130. doi:
10.1007/978-3-642-28777-0_7.

[2] S. Bangsow, Ed., Use Cases of Discrete Event Simulation. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-28777-0.

[3] Z. Liu, C. Diedrich, and N. Suchold, Virtual Commissioning of Automated Systems.
INTECH Open Access Publisher, 2012. Accessed: Jul. 02, 2015. [Online]. Available:
http://cdn.intechopen.com/pdfs/37992/InTech-

Virtual_commissioning_of _automated_systems.pdf

-26-

