

Open-Digital-Industrial and Networking pilot lines using modular

components for scalable production

Grant Agreement No : 101017141

Project Acronym : ODIN

Project Start Date : 1st January, 2021

Consortium : UNIVERSITY OF PATRAS – LABORATORY FOR MANUFACTURING

SYSTEMS AND AUTOMATION

FUNDACION TECNALIA RESEARCH & INNOVATION

KUNGSLIGA TEKNISKA HOEGSKOLAN

TAMPEREEN KORKEAKOULUSAATIO SR

COMAU SPA

PILZ INDUSTRIEELEKTRONIK S. L.

ROBOCEPTION GMBH

VISUAL COMPONENTS OY

 INTRASOFT INTERNATIONAL SA

 GRUPO S21SEC GESTIÓN, S.A.

 FUNDACION AIC AUTOMOTIVE INTELLIGENCE CENTER FUNDAZIOA

 DGH ROBOTICA, AUTOMATIZACION Y MANTENIMIENTO

INDUSTRIAL SA

 PSA AUTOMOBILES S.A.

 AEROTECNIC COMPOSITES SL. U.

 WHIRLPOOL EMEA SPA

WHIRLPOOL MANAGEMENT EMEA SRL

Title : ODIN Digital Component virtual commissioning framework – Final Version

Reference : D3.4

Availability : Public

Date : 22/01/2024

Author/s : VIS, TECNALIA, LMS

Summary:

The purpose of this document is to present the final version of the integrated digital tools for virtual

commissioning and control.

Ref. Ares(2024)470806 - 22/01/2024

ODIN 101017141

-2-

Table of Contents

LIST OF FIGURES ... 3

LIST OF TABLES ... 4

1. EXECUTIVE SUMMARY ... 5

2. INTRODUCTION ... 6

3. VIRTUAL COMMISSIONING .. 7

3.1. Virtual Commissioning in ODIN ... 8

3.2. Open interface .. 9

3.2.1. ROS 2 Connectivity .. 9

3.3. Communication interface ... 10

3.3.1. UR plugin ... 11

3.3.2. KUKA plugin ... 12

4. ROBOT VIRTUAL COMMISSIONING ... 14

4.1. Workflow for virtual commissioning ... 15

4.1.1. Robot programing and simulation .. 15

4.1.2. Post-process to the robot language ... 16

4.1.3. Upload the robot program to the VRC ... 19

4.1.4. Configuration of the robot in the VRC ... 19

4.1.5. Position set up .. 20

4.1.6. Program validation in the VRC .. 20

4.1.7. Signals mapping ... 21

4.1.8. Virtual validation .. 21

5. CONTROL SYSTEMS COMMISSIONING ... 23

6. CONCLUSIONS ... 24

7. GLOSSARY .. 25

8. REFERENCES .. 26

ODIN 101017141

-3-

LIST OF FIGURES

Figure 1: Engineering project with and without Virtual Commissioning [3] ... 7

Figure 2: System lifecycle used in ODIN with and without virtual commissioning 7

Figure 3: Overview of the communication interfaces used in ODIN for Virtual Commissioning 8

Figure 4: Overview of the open interfaces and current development within ODIN 9

Figure 5: Connectivity schema between Visual Components and ROS2 ... 9

Figure 6: Workflow of ROS2 message to VIS sending joint goal to obtain interpolation time 10

Figure 7: Screenshots of the configuration and programming of a KUKA robot within VC 4.0 12

Figure 8: Screenshot of the configuration window within the simulation for RCS and KRL 13

Figure 9: Robot program editor available in VC 4.0 (r4.8) ... 14

Figure 10: Screenshot of the robot executor properties UI ... 15

Figure 11: Robot programming within VC 4.0 ... 16

Figure 12: Screenshot of VC 4.0 UI showing access to Post Process ... 16

Figure 13: Screenshot of the KUKA SUNRISE - Java post-process .. 17

Figure 14: Screenshot of the post-process tab available at VC 4.0 for UR, PP Type URP (left) and PP

Type Script (right) .. 17

Figure 15: Screenshot of the post-processing of robot program of the COMAU Aura robot 19

Figure 16: Upload process of the robot program into the virtual robot controller 19

Figure 17: Configuration of the virtual controller with the same operation parameter than the simulation

 .. 20

Figure 18: Position synchronization of the robots in VC 4.0 .. 20

Figure 19: Validation of the robot controller .. 21

Figure 20: Process of connecting the UR VRC and the robot in the simulation through the

communication interface .. 21

Figure 21: UR robot in VC 4.0 connected to the virtual controller through the communication interface

displaying the program uploaded in the VRC .. 22

Figure 22: KUKA Robot in VC 4.0 connected to the virtual controller through the communication

interface displaying the program uploaded in the VRC ... 22

Figure 23: Screenshot of the virtual environment using the OPC communication with control (PLC)

validation vs simulation ... 23

ODIN 101017141

-4-

LIST OF TABLES

Table 1: Commands provided by the communication feature of Visual Components 4.0 10

Table 2: Statements available to program a robot in the VC 4.0 .. 14

ODIN 101017141

-5-

1. EXECUTIVE SUMMARY

The target of this document is to present the work being developed in Task 3.5 of the ODIN project.

This task targets the virtual control and commissioning of the pilots. The task extends the work

developed within WP3 to the development of interfaces to validate pilots’ requirements using virtual

control and commissioning.

The document contains the work towards the development of communication interfaces for the

OpenFlow and Robot, for virtual control and commissioning. Virtual commission is developed in one

line to address the validation of the automation systems supported by the virtual control with the

development of the interfaces and connectivity.

The deliverable provides details about the development of the communication interfaces implemented

on top of the simulation platform used in ODIN, Visual Components 4.0 (VC 4.0) release 4.8, and the

development of communication interfaces for robots used in the project pilots, COMAU, UR and

KUKA.

The deliverable ends with the workflow introduced for virtual commissioning and the requirements

regarding access to virtual robot controllers (VRC).

ODIN 101017141

-6-

2. INTRODUCTION

This deliverable presents the work developed in task 3.5 towards the virtual control and commissioning

of the pilots. In this document the work completed is presented by starting with a brief overview of

virtual commissioning and the relevance under the ODIN project.

 Aligned with the objectives of ODIN project, the further development of technologies and

methodologies that support virtual commissioning and control and the introduction of them in the pilots

will enhance productivity, accelerating the deployment of automation and robotics technologies.

Section 3 starts with virtual commissioning, which is the phase before the commissioning of a

manufacturing system. As presented in section 3, it is an important phase of the automation system

lifecycle, and the availability of technologies that enables will enhance productivity, avoiding costly

mistakes, accelerating production ramp-up and achieving quality. The section continues with the work

developed towards the integration with OpenFlow developing ROS 2 Connectivity (section 3.2).

The deliverable continues with section 3.3 and the work completed towards the development of

interfaces for communication, for enabling the virtual control and commissioning. The development of

the control has been done using the open interfaces provided by VC 4.0, and the communication

interface for the UR and KUKA plugins for virtual commissioning.

The deliverable ends with the robot virtual commissioning in section 4, which includes the workflow

for robot virtual commissioning.

ODIN 101017141

-7-

3. VIRTUAL COMMISSIONING

To have a common understanding about virtual commissioning, it is required to define what

commissioning means in discrete manufacturing automation. According to [1], commissioning is

defined as “the task to put the mounted products on time in readiness for operation, to verify their

readiness for operation and, if readiness for operation is not given, to establish it”. Commissioning is

the final part of the system development and delivery process that results in a fully operational and

tested system ready to use, which can be delivered to the customer [2].

In practice, commissioning of automation systems includes various procedures to check, inspect and

test every operational component of the system, from physical fit of components and connections of

electrical wiring to correct operation of work cells and the system as a whole. For controls´

commissioning the activities include correction of software errors, correction of addressing failures,

teaching of sensor positions and adjustment of parameters such as speeds [2]. Out of the total

commissioning phase, time spent on control software and electrics is by far the most time-consuming

part with up to 90% share. As Figure 1 shows, the utilization of virtual commissioning reduces

considerably the time improving production ramp-up, integration and avoidance of errors. [2], [3].

Figure 1: Engineering project with and without Virtual Commissioning [3]

The system lifecycle is presented in deliverable 3.2 and used along the project. Figure 2 introduces the

virtual commissioning phase in the overall system lifecycle, and its integration within the simulation

environment through connectivity technologies and its application in the digital twin.

Figure 2: System lifecycle used in ODIN with and without virtual commissioning

ODIN 101017141

-8-

3.1. Virtual Commissioning in ODIN

Task 3.5 in ODIN has extended the work developed in previous WP3 tasks to virtual control and

commissioning of the pilots. To achieve this objective, new communication interfaces have been

developed and integrated inside the digital simulation platform, provided by Visual Components 4.0

(VC 4.0), which allows communicating the DC with the OC to enable virtual control of the pilot in the

simulation environment. The developments within the project have been integrated in the different

release of the platform, being at the moment of completing this deliverable the release 4.8 (VC 4.0

(r.4.8) the one in use.

During the tasks development, the work has been focused on the identification of the interfaces, and

data models used in other tasks, and extend it with the pilot requirements of work package 5 (WP5). As

mentioned in the description of work, the interfaces developed will be validated in the three pilots to

ensure their validity during the project. The development of the virtual commissioning in ODIN is

considering the pilot requirements, in addition to considering the interoperability requirements with the

rest of the modules developed in the project. The three pilots in ODIN contain different automation

equipment which can be validated during the virtual commissioning phase:

- Robot control

- PLC

- Sensors

- Cameras

- etc.

Visual Components 4.0 Premium, particularly the release 4.8, used in the final stage of task 3.5, provide

the communication feature, described in more detail in section 3.3, which allows the development of

communication plugins (Figure 3). Currently OPC UA is available and allows the control, validation

and virtual commissioning of systems that supports that communication protocol.

Two plugins over the communication interface have been developed and deployed for supporting the

task in the ODIN project in the virtual commissioning of the robots, the UR plugin (3.3.1) and the

KUKA plugin (3.3.2). In addition to the communication interface, Visual Components 4.0 provides two

open interfaces (3.2), .Net and Python. The open interfaces are the based to develop the plugin for ROS2

connectivity (3.2.1) that in addition to connect with ROS 2 is the base for the communication through

OpenFlow.

Figure 3 summarizes the interfaces developed and used in ODIN under the scope of task 3.5. Despite

the task being completed, its utilization continues and the final integration within the pilots will be

reported in D5.5.

Figure 3: Overview of the communication interfaces used in ODIN for Virtual Commissioning

ODIN 101017141

-9-

While the virtual control and validation has been focused on the development of ROS2 through the .Net

interface, the virtual commissioning of the robots (UR and KUKA) have been achieved using dedicated

plugins to support the full virtual commissioning in the white goods and aeronautics pilots and partially

in the case of the aerospace pilot as it is explained in section 4.1.2.3.

3.2. Open interface

VC 4.0 provides two open interfaces, .Net and python (Figure 4), which allow the development of the

required interfaces. Both interfaces provide an API for developers available through VC 4.0 user

interface, which is extensively documented in the help menu of VC 4.0.

Figure 4: Overview of the open interfaces and current development within ODIN

While the python interface allows to create situation components and the development of add-ons, like

the post-processors developed and integrated in the Programing tab, the .Net interface is targeting the

development of plugins and extensions.

Within the ODIN project, the python interface is mainly used for the development of simulation models,

but also for prototyping initial communication interfaces through TCP/IP or dedicated interfaces. The

.Net interface has been used, mainly for the development of ROS 2 connectivity and the robotics

communication interface.

3.2.1. ROS 2 Connectivity

Using the .Net interface, a plugin for ROS 2 connectivity has been developed. This plug-in has been

under active development until the end of the task and has integrated the ODIN communication

requirements through OpenFlow. It supports, publishes, and subscribes to ROS2 topics as showed in

Figure 5.

Figure 5: Connectivity schema between Visual Components and ROS2

ODIN 101017141

-10-

The communication through ROS2 also allows the connectivity between VC 4.0 and OpenFlow, which

also supports ROS2 interface. In that way it is integrated though the ODIN network component provided

by OpenFlow with the rest of the ODIN connected components.

An example of the completed implementation is the use case showed in Figure 6. In this use case, joint

goals are received from ROS2 to VC 4.0. The message is received through the topic and VC 4.0 creates

trajectory points and statements. Once these are created, within VC 4.0 is checked reachability, joint

configuration and singularity. After this, VC 4.0 sends the interpolation time through the topic, which

is received by ROS2, request id and success message (Figure 6).

Figure 6: Workflow of ROS2 message to VIS sending joint goal to obtain interpolation time

Additionally, development and integration efforts have been devoted specifically for the functionalities

of connecting the digital simulation in VC 4.0 with the Digital Twin module of KTH as well as the AI

task planner of LMS reported in D3.3.

3.3. Communication interface

The communication interface is a feature provided by VC 4.0 that allows the development and

deployment of connectivity plug-ins. This feature and its commands can be accessed from the

Connectivity tab accessible through the user interface of VC 4.0.

The feature provides the commands described in Table 1, and allows communication between the

virtual systems (sensors, actuators, conveyors, robots, machines, etc.) in the virtual environment and

the controllers which can be real or virtual.

Table 1: Commands provided by the communication feature of Visual Components 4.0

Commands Description

Add Group Adds and lists a new variable group with a selected connection.

Add Server Adds a new connection for a selected plugin.

Add Variables Opens an editor for connecting simulation variables to server variables.

Clear Removes all connections for each plugin.

Disconnect Disconnects Visual Components Premium 4.8 from a selected connection.

Edit Connection
Displays options in a task pane for editing or troubleshooting a selected

connection.

Export Exports the configuration of all connections in an XML format.

Import
Imports an XML or CFG file that defines the configuration of one or more

connections.

ODIN 101017141

-11-

Commands Description

Reconnect Attempts to reconnect Visual Components Premium 4.8 to a selected connection.

(Server) Remove Removes a selected connection.

(Variable)

Remove
Removes a selected variable group.

Restore Windows Restores the workspace of the current view to its default setting.

Show
Displays a list of panels that can be shown/hidden from the current view of the

workspace.

Show Variables
Shows a panel for managing the connection between simulation and server

variables.

The work developed towards the development of communication interfaces for ODIN are targeting the

connectivity with UR (3.3.1) and KUKA (3.3.2) to match the robot requirements towards virtual

commissioning in the white goods pilot and in the aeronautics pilot.

The base for the development has been the RRS (Realistic Robot Simulation) robot controller provided

within VC 4.0 API, which visualizes within the simulation environment the realistic robot motions by

using the native controller of a robot, particularly in ODIN the VRC controllers as presented in section

4.1.

3.3.1. UR plugin

Support for UR connectivity has been developed within ODIN, including a plugin which allows

connecting the Universal Robot controller through RTDE interface 1(Real Time Data Exchange). The

plugin for the communication interface enables seamless communication between the virtual robot and

the virtual robot controller (VRC).

The Real-time data exchange (RTDE) interface provides a cyclic stream of value updates from the

controller and listens for inputs. The interface updates (sends and handles data packages) at a fixed

frequency and is based on a binary application-level protocol transmitted over (insecure) TCP/IP socket

communication. The robot controller uses TCP port 30004 for the interface. The connection plugin's

RTDE client implementation developed uses an automatically assigned port (either by .NET or

Windows) for the socket.

The basic operation principle involves two modes, configuration and run. First, the client configures

with the server the data it wants to receive and data it wants to send. This is done in configuration mode.

After configuration has been set, the client can request the controller to enter run mode where the

controller sends the requested data at the fixed 125 Hz frequency and the client can send its data at a

preferred rate. Run mode can also be paused by request of the client to return to configuration mode.

The data packages the client and controller send to one another are defined with input and output recipes

in configuration mode:

- Input is data flow from client to controller.

- Output is data flow from controller to client.

The recipes contain one or more variables from a known fixed set, and the associated data packages

contain values for all variables in the recipe.

The current version of the RTDE protocol supports only a single output recipe per client, but up to 255

input recipes can be defined per client. Furthermore, it is not possible to remove an input recipe without

disconnecting and creating an entirely new one. This means that adding/removing a variable pair or

1 More information about the RTDE interface can be found at https://www.universal-

robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/

https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/
https://www.universal-robots.com/articles/ur/interface-communication/real-time-data-exchange-rtde-guide/

ODIN 101017141

-12-

activating/deactivating a variable group always causes a recipe update. Since the recipe update can only

be done in configuration mode, the RTDE client implementation automatically requests pausing from

the controller, and then either a) redefines the output recipe shared between all variable groups or b)

registers a new input recipe for the activated variable group.

The RTDE protocol does not provide any way to poll the controller for value updates. This causes some

limitations that differentiate the RTDE connection plugin from others. The RTDE connection plugin

manages a local cache of the variable values for all configured recipes (active variable groups). This

allows using cyclic update mode to read output recipe values at any desired frequency and sending

whole input recipe data to the controller in event-based update mode. However, since the output recipe

updates are received and input recipe data is sent asynchronously, the update delay timing functionality

of Connectivity core does not really work with the RTDE plugin. The times measured are only

processing times to get data in or out of the cache. That is, they do not include the network delay or

even how old the received output recipe data is when the cache is read using cyclic update mode.

The plugin has been extended with the development of the post-processor which converts the robot

program statements from VC 4.0 to the UR language (.urp). To validate the program Universal Robots

provides, free of charge, the URSim robot controller simulator2 which allows to load the robot program

and validate to later visualize for virtual commissioning purposes.

3.3.2. KUKA plugin

The KUKA communication plugin has been developed targeting connectivity to KUKA RCS (KRCS-

KUKA Robot Control System). This plugin can be activated when necessary and requires a license for

the KUKA VRC.

The seamlessly integration within the VC 4.0 UI facilitates its use, as the user only needs to concentrate

in the creation of the simulation, choosing the robot, adding the tools, configuring robot, tool and signals

and creating the program within VC 4.0 (Figure 7).

Figure 7: Screenshots of the configuration and programming of a KUKA robot within VC 4.0

2 Available for downloading from https://www.universal-robots.com/download/software-e-series/simulator-non-

linux/offline-simulator-e-series-ur-sim-for-non-linux-594/

https://www.universal-robots.com/download/software-e-series/simulator-non-linux/offline-simulator-e-series-ur-sim-for-non-linux-594/
https://www.universal-robots.com/download/software-e-series/simulator-non-linux/offline-simulator-e-series-ur-sim-for-non-linux-594/

ODIN 101017141

-13-

The post-processing is done according to the configuration defined in the simulation components, that

includes the KRL and the RCS (Figure 8).

Figure 8: Screenshot of the configuration window within the simulation for RCS and KRL

ODIN 101017141

-14-

4. ROBOT VIRTUAL COMMISSIONING

The virtual environment provided within VC 4.0 (r4.8) provides the functionalities to program a robot

and simulate the robot. The robot program editor presented in D3.2 deploys the functionalities to create

a robot program or modify existing ones or generated with path planning and other available tools within

VC 4.0. Table 2 shows the statements available in VC 4.0 (r4.8) to program a robot through the robot

program editor.

Table 2: Statements available to program a robot in the VC 4.0

While programming a robot in the virtual layout the user can just add the statements in the desired

orders. Statements can be edited and rearranged in through the user interface just moving them in the

desired order through the program editor UI (Figure 9).

Figure 9: Robot program editor available in VC 4.0 (r4.8)

ODIN 101017141

-15-

Once the robot program has been created and the initial simulations have been created, the statements

can be simulated using the executor available in VC 4.0, which has been extended during the project.

The executor in VC 4.0 reads, write and execute a robot program providing the properties showed in

Figure 10, which can be modified by the user.

Figure 10: Screenshot of the robot executor properties UI

Once the robot is set up, configured in the layout, and programmed, the robot program routines must be

transferred to a language that the robot can understand, action known as post-process. Every robot

manufacturer has its own robot program language that runs in its proprietary robot controller. The post-

process transfers the robot program created during the simulation stage into the language that the robot

can run into its controller.

The work developed in ODIN project has been focused on the post-processors for UR, KUKA and

COMAU aligned with the white goods pilot, the aeronautics pilot and the automotive pilot.

After post-processing the robot program can be uploaded in the robot controller and start testing the

program, but as mentioned in section 3 and aligned with the target of the Task 3.5, the use of virtual

commissioning will allow to validate the code and identify possible errors. To achieve the virtual

commissioning, the workflow presented in the next section has been followed.

4.1. Workflow for virtual commissioning

Once the pilot layout has been created in the virtual environment and the initial simulations have been

completed, it is possible to start the virtual commissioning or the robots. For achieving virtual

commissioning, a workflow of eight steps presented below has been set up.

4.1.1. Robot programing and simulation

The robot is programmed in VC 4.0 using the robot programming statements, presented in Table 2 using

the UI as showed in Figure 11 which provides access to the program editor. Modification to the robot

programming to change parameters and create new programs can be also done with the robot program

editor (detailed in Figure 9).

ODIN 101017141

-16-

Figure 11: Robot programming within VC 4.0

In VC 4.0 all the robots are programmed with the same methodology, independent of the brand. This

facilitates the learning of the software and the adaptation to different brands. During the concept and

engineering phase this characteristic allows the user to analyze the performance of different robot

brands and models allowing them to choose the one which adapts better to the requirements of the tasks,

without adding additional robot programing effort as the program only requires to be created once and

is reused when simulating the different robots.

4.1.2. Post-process to the robot language

When the simulation results match the operational requirements, the robot program in the simulation is

postprocessed to the robot language. The access to the post processor is through the UI, PROGRAM

tab/ Post Process button (Figure 12).

Figure 12: Screenshot of VC 4.0 UI showing access to Post Process

Once clicked, the Post Process button the generation of the specific code for the robot brand/model

starts. The developed add-on selects the correct post processor, based on the properties defined of the

robot within the virtual space.

As mentioned at the beginning of this section, each robot brand has its own programming language.

Furthermore, depending on the model of controller the robot is using, has different characteristics.

Within the ODIN project the development has been focused on the development and maintenance of

the program post-processor as well as the communication plugins (section 3.3) required in the project.

4.1.2.1. KUKA

For the KUKA robot, used in the aeronautics pilot, the KRL is supported (KUKA Robot Language).

The post-processor generates one *.src and one *.dat file. Base/tool frame definitions are written at the

beginning of the main routine, which can be commented on the robot settings definition in VC 4.0 UI.

ODIN 101017141

-17-

Furthermore, the post-processor also supports SUNRISE -Java for the required KUKA robot controllers

defined within the simulation. One *.java and one RoboticsAPI.data.xml file is generated. The *.java

file contains the program itself and the base/tool frame definitions as well as position frames are written

into the RoboticsAPI.data.xml file (Figure 13). Simulation IOs should be mapped to real IOs using

wrapper functions GetDO and GetDI in .java file so that for given simulation IO port those functions

should return desired Output or Input object.

Figure 13: Screenshot of the KUKA SUNRISE - Java post-process

4.1.2.2. UR

For the UR robot used in the white goods pilot, the post-processor produces a *.urp file for each routine

defined in VC 4.0 program editor. But before creatin the *.urp file, is required to set up the configuration

in the window opened after clicking the Post Processor button (Figure 14).

Figure 14: Screenshot of the post-process tab available at VC 4.0 for UR, PP Type URP (left)

and PP Type Script (right)

ODIN 101017141

-18-

The configuration includes:

- "PP Type"

o If set to "Script" produces on .script file instead, which that can be imported into a

script command.

o “URP” is supported only for e-Series UR models. (Note that in .urp, subroutine calls

are only possible from the main routine)

- Tool definition:

o The TCP name used in VC 4.0 should be defined in Polyscope under INSTALLATION

> TCP

▪ VC Tool > X, Y, Z > TCP Position X, Y, Z

▪ VC Tool > Rx, Ry, Rz > TCP Orientation Unit (RPY in degree)

▪ *NULL* TCP in VC 4.0 will create 'Tool0' in MoveL and MoveJ . DEFINE

THE TCP NAME as 'Tool0' IN POLYSCOPE UNDER INSTALLATION >

TCP with position and orientation as '0'

- Sequence (routines):

o During post-process, each subroutine in VC 4.0 is created as *.urp file

o Loading the *.urp (main) file in Polyscope, Call statement and SubProg with the

(sequence) routine name is created.

o Users should manually navigate to the *.urp(sequence) file from their file system and

select it. Also assign it to Call statement.

- Supported VC 4.0 statements:

o PTP/LIN/Path, Wait Input, Set output, Halt, Comment, Call, Assign, If, While

- Settings:

o Use Active TCP (URP): sets if default TCP is used or if TCP is specified in

statement.

o Hide Sub Program Tree (URP): Hide/show subroutine tree in URP.

o Use set_tcp (Script): Use set_tcp function to set active tool pose. Use this if there

are many tool frames in your program created in VC 4.0.

o Use acceleration values (Script): Use optional parameter for acceleration on motions.

o movel (Figure 14) as joint values (Script): Post movel as joint values instead of

cartesian pose.

o Path motion type (URP/Script, Figure 14): Post path statement as movel or movep.

o Input mapping (URP/Script, Figure 14): Select IO type where wait input statements are

mapped.

o Output mapping (URP/Script, Figure 14): Select IO type where set ouput statements

are mapped.

4.1.2.3. COMAU

For the COMAU robot used in the automotive pilot, the post-processor generates one *.pdl file

including main and subroutines and one *.lsv file containing global variables such as positions.

Base/Tool definition are written at the beginning of the program before the actual main routine is called.

(Figure 15).

ODIN 101017141

-19-

Figure 15: Screenshot of the post-processing of robot program of the COMAU Aura robot

4.1.3. Upload the robot program to the VRC

After the program has been post-processed into the language of the robot, the file is uploaded to the

robot VRC. Similar processes are followed in the UR and in the KUKA.

In the case of the COMAU robot, the communication interface (section 3.3) has not been developed

because the VRC is not available so this step and the following for virtual commissioning are followed

and by uploading the post-processed file directly to the real robot as it has been presented in D5.4.

Figure 16 shows the process of uploading the *.urp file into the VRC for the UR robot.

Figure 16: Upload process of the robot program into the virtual robot controller

4.1.4. Configuration of the robot in the VRC

The VRC, which mirrors the real controller virtually, should be configured with the same operational

parameters as the robot in the simulation. Figure 17, shows how the operational are adjusted in the

VRC, in this case in the UR.

ODIN 101017141

-20-

Figure 17: Configuration of the virtual controller with the same operation parameter than the

simulation

4.1.5. Position set up

In addition to the robot configuration, both robots, the one in the simulation and the one in VRC should

be in the same initial position before starting the virtual commissioning process (Figure 18).

Figure 18: Position synchronization of the robots in VC 4.0

4.1.6. Program validation in the VRC

VRC allows to test and validate the code upload, this facilitates to verify the robot program post-

processed into the virtual controller (Figure 19).

ODIN 101017141

-21-

Figure 19: Validation of the robot controller

4.1.7. Signals mapping

Signals between the VRC and the simulation are mapped and the connection between both virtual

environments are established through the communication interface.

Figure 20: Process of connecting the UR VRC and the robot in the simulation through the

communication interface

4.1.8. Virtual validation

As long as the virtual commissioning of the system starts, the VRC runs the programs according to the

signals received from the simulation and the results are visualized in the virtual robot at the virtual

environment provided by VC 4.0 verifying the robot program is performing as expected during the

simulation phase. Figure 21 shows this last step for UR robot.

ODIN 101017141

-22-

Figure 21: UR robot in VC 4.0 connected to the virtual controller through the communication

interface displaying the program uploaded in the VRC

Figure 22: KUKA Robot in VC 4.0 connected to the virtual controller through the

communication interface displaying the program uploaded in the VRC

ODIN 101017141

-23-

5. CONTROL SYSTEMS COMMISSIONING

In addition to ROS 2 connectivity developed to connect through the OpenFlow, VC 4.0 allows the

connectivity through OPC UA allowing the control of the systems connecting directly to the PLC

(Figure 23). The utilization of this interface for control and validation has been discussed for the white

goods pilot for controlling the PLC in the pilot.

Figure 23: Screenshot of the virtual environment using the OPC communication with control

(PLC) validation vs simulation

ODIN 101017141

-24-

6. CONCLUSIONS

The work developed in Task 3.5 towards virtual control and commissioning has been focused on

identifying the initial requirements for virtual commissioning of robots, targeting the robots used in the

white good pilot and aeronautics pilot. The work has been completed and the results obtained are the

base to continue the work in the final part of the ODIN project, particularly WP5.

The connectivity plug-in for ROS2 to integrate with OpenFlow has been deployed and is operational

for robot movement and messages through OpenFlow has been completed. Connectivity with other

modules such as the KTH’s digital twin and LMS’s AI task planner has been deployed as reported in

D3.3.

Despite the task has been completed, the integration work will continue in WP5 for the three pilots

giving the opportunity to extend the functionalities.

ODIN 101017141

-25-

7. GLOSSARY

API Application Program Interface

IP Internet Protocol

TCP Transmission Control Protocol

OC Open Component

OPC UA Open Platform Communication Unified

Architecture

DC Digital Component

RTDE Real Time Data Exchange

UR Universal Robots

.urp universal robot program (extension)

RCS Robot Control System

ROS Robot Operating System

RRS Realistic Robot Simulation

VC 4.0 Visual Components 4.0

VRC Virtual Robot Controller

WP Work Package

ODIN 101017141

-26-

8. REFERENCES

[1] S. Bangsow and U. Günther, ‘Creating a Model for Virtual Commissioning of a Line Head

Control Using Discrete Event Simulation’, in Use Cases of Discrete Event Simulation, S.

Bangsow, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 117–130. doi:

10.1007/978-3-642-28777-0_7.

[2] S. Bangsow, Ed., Use Cases of Discrete Event Simulation. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-28777-0.

[3] Z. Liu, C. Diedrich, and N. Suchold, Virtual Commissioning of Automated Systems.

INTECH Open Access Publisher, 2012. Accessed: Jul. 02, 2015. [Online]. Available:

http://cdn.intechopen.com/pdfs/37992/InTech-

Virtual_commissioning_of_automated_systems.pdf

